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Tensors and Differential Geometry Applied
to

Analytic and Numerical Coordinate Generation+

by
*
Z. U. A. Warsi
Department of Aerospace Engineering

Mississippi State University
Abstract

The two main objectives of this monograph are, (i) to present and
collect at one place some important classical results and concepts from
the theories of tensor analysis and differential geometry, and, (ii) to
use the presented results in devising differential models for generating
coordinates in arbitrarily bounded regions. Though most of the discussions
on tensors and differential geometry are in the context of curvilinear
coordinate generation, the first two parts can profitably be used for
applied problems in various branches of engineering both by students and
researchers. The last part of the monograph is concerned with the develop-
ment of two methods, based on differential equations, for the generation
of coordinates. The selected models are based on elliptic partial dif-
ferential equations which can be solved on a computer to provide smooth

differentiable coordinate curves in the regions of interest.
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Introduction

The purpose of this monograph is to present the theories of basic
tensor analysis and of the differential geometry of surfaces for the
purpose of formulating problems of coordinate generation in regions
bounded by arbitrary curves or surfaces. Since the writing of the first
memoir on the subject of tensor analysis by Ricci and Levi-Civita [1}
in 1901 some very significant developments in the theory of tensor
analysis have taken place, though, the major applications of the subject
have only been confined to the general theory of relativity and to the
continuum mechanics. In this monograph an attempt has been made to
utilize the theories of classical tensor analysis and differential
geometry of surfaces in developing new methods for the generation of
coordinates in arbitrary regions. Only those results of tensor theoretic
and differential geometric significance have been explained which are
needed in the development of the subject in a fruitful manner. However,
it turns out that for a better understanding and a sound conceptual
orientation some basic ideas, by the way of definitions and notations,
have also to be introduced. Though this elementary exposition forms a
small part of the total effort, and is explained much better in the
references given below, nevertheless, its inclusion imparts a sort of
continuity to the whole presentation.

Almost all the material explained in Parts I and II of this monograph
is available in the standard texts, such as, Levi-Civita [2], Weatherburn

[3], McConnell (4], Eisenhart [5], [6], Tolman [7], Graustein (8],

"
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Synge and Schild [9], Brand [10], Spain [11], Truesdell and Toupin
[12], Struik [13], Sokolnikoff ([14], Willmore [15], O'Neill [16],
and Kreyszig [17], [18], on the classical topics in tensors and dif-
ferential geometry. Some other texts and monographs which can be used
with advantage are Aris [19], Borisenko and Tarapov [20], Stoker [21],
Spivak [22], do Carmo [23], Fligge [24], Howard [25], and Eiseman [26].
Part III of this monograph is the culmination of the ideas
developed in Parts I and II. Specifically §§2 and 8 of Part I and
§82 and 3 of Part II provide the necessary material for the development
of new ﬁethods of coordinate generation. It is the hope of the author
that the material of Part III will form a framework for further research

in the area of mesh generation for physical problems, based on partial

differential equations.
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Part I .

Fundamental Concepts and Basic Tensor Forms

§1. Preliminaries.
In this section we summarize some elementary operations on vectors
and tensors with the assumption that an Euclidean space is available in

which a set of rectangular Cartesian coordinates has been introduced.

= DRSS L S T N SO GNP S

Further, to maintain a sort of continuity of exposition with the rest
of the sections, we also clarify the nomenclature of some commonly used
terms. For further details the reader is referred to References [ 4],

[11] and [14].

In this report the vectors and tensors will be denoted by using the

symbol -~ under and above a letter, respectively. Thus, the vectors are
denoted as u, ¢, etc., and the tensors as T, ;, etc.
A rectangular Cartesian system of coordinates in a three-dimensional

{
Euclidean space will usually be denoted by Xy (i =1,2,3), or, occasionally ;5

as x,y,z. The orientation of axes will always be assumed to be right-

handed. xz

Figure 1.




]

The basis of a rectangular Cartesian coordinate system will be denoted
by a system of constant unit vectors ey (i =1,2,3). The components
of a vector v with respect to a rectangular Cartesian system will be

denoted by vy (i =1,2,3).

§1.1. Summation Convention on Cartesian Components.
A repeated index on quantities either appearing as a single entity

or as products will imply summation. Thus

aibi = albl + a2b2 + a3b3 (1a)
aiTij = alle + aZsz + a3T3j (1b)
Tyg = Ty + Tap * T3 (1)
while no summation is implied in
Tij + Tji (2)
§1.2. Vector Multiplications Using Cartesian Components.
(i) Scalar or dot product:
a -+ b= ab cos (3a)
= a_b (3b)

idi

where 0 1s the angle between a and b, and a, b are the magnitudes

of the vectors a and b respectively. Obviously

(4)

a=|al=va-a= /aia

i
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(ii) Cross product:

= (ab sine)g )

where n is the unit vector normal to the plane containing a and b.

The i-th component of v is then

vy = eijkajbk (6)

where e, is the permutation symbol+. The permutation symbol has

ik
the value +1 if i,j,k are taken in a right-handed cyclic permutations

of 1,2,3; the value -1 if i,j,k are in the cyclic permutations of

1,3,2. Thus
e123 = 1 » egp; = -1 5 €119 = 0, etc.
2
'
3
Figure 2,

(iii) Scalar triple product:

a - (bxg)-= c ()

o [ n
w N
o o o
w N =
w N =

iik

+Also somet imes written as e .

o

EAt A

———
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2 X =b(cxa)=c-@xh) (®)
(iv) Vector triple product:
(@ xb) xc¢c=0bla-c)-al-c) 9)
ax (bxc)=>ba-c)-c(a-b) (10)
(v) Lagrange identity:
(@xb) » (cxd)=(-c)b-d)-(a-d)(b-c) (11)

§1.3. Placement of Indices (Covariant and Contravariant).
For simplicity consider a two-dimensional rectilinear but skew

coordinate system in a plane as shown in Fig. 3a.

Figures 3a, b, c.
Let a vector w emanate from the point 0. We now decide not to use any
subscripted variables on the components of w since we want to develop a
consistent method of index notation. Obviously there are two ways to

write the vector w in a linear form.

PRI chairmeres
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(i) Parallel projection:
Let A and u be a basis for the coordinate axes Ox and Oy
respectively as shown in Fig. 3b. From the tip of w draw lines

parallel fo OX and OY to have a parallelogram OAPB. Thus

w = Ap + ugq (12)

where p and q are the components of w with respect to the basis

(é,y). To find the lengths OA and OB, we introduce unit vectors

X
I

MIX L, vo= /]

Then

w=ulie +vivla 13)

so that [}]p and |E|q are the respective parallel projections of w
on the coordinate axes.
(ii) Orthogonal projection:

Another method of writing w in a linear form is to draw
perpendicular lines PD and PC on the coordinate axes as shown in
Fig. 3c. We now draw lines OX' and OY' parallel respectively to
PD and PC. Obviously the axes OX' and 0Y' are perpendicular to OY
and OX respectively. Let { and x be the basis for this new coordinate

system. Then

tE

= YR + 18 (14)

But since




so that writing

we obtain

W= r + s (15)

Because of the two possible linear representations of the
same vector w, viz. (13) and (15), it is important to introduce a

new system of labeling. It is a standard convention to write

so that

. gl = .« a2 = .« 32 = .« gl =
3 ra=1l,a ~a"=1,2a +a°=a +a =0
p=w!, q=w?
r = wl , § = w2

Thus (13) and (15) can be written as

we=awl + a2w2 (16)

wEa a




w = alw, + a’w an

. . i
The quantities w, are called the covariant components, and w are

i
called the contravariant components of the same vector w. Similarly
the vectors 3, and gi are respectively the covariant and contravariant
base vectors. It is easy to conclude that if the axes OX and OY are
orthogonal, thus forming a rectangular Cartesian coordinate system,

then there is no distinction between the covariant and contravariant

components.

§1.4. Dyads.

An indefinite product of two vectors a and b written as

¢ = ab (18)

is called a dyad. Some authors put the symbol () between a and b. It
is instructive to view dyads as operators since their utility lies in
the area of operations with vectors or other dyads. In Cartesian coor-

dinates we can also write

¢ = aibjgigj (19)
The dyad ba is the transpose of & written as @*. Thus
¢* = ba (20)

so that

Addiiicia,
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PR ™S

i




§1.4.1. Operations with Dyads.

The scalar product of a dyad with a vector u is a vector.

(24
I}
-
.
=

In general the vector w obtained by pre-multiplication

w=u-°4¢

is different from v. However, it is easy to verify that

(K]
]
i
e
[}
14
.
-t

For two arbitrary vectors v and w, we have the result

~

we(orw)=v e (6 - w

~

The unit dyad is defined as

e
L}
m

since its dot product with a vector

- i-3

is again v, viz.,

The scalar product of two dyads

<
1l

le]

(=%

¢ = ab,

That is,

(22)

(23)

(24)

(25)

(26)

(27)

—
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is

$ + ¥ =(ab) + (cd) = (b + c)ad (28)

The double scalar or inner product is defined as

~

$ ¥ = (ab) : (cd)
=)k - d (29)

§1.5. Curvilinear Coordinates.

General curvilinear coordinates introduced either in Euclidean or
non-Euclidean spaces (cf. §2) will always be denoted by xi. As stated
earlier, the rectangular Cartesian coordinates will be denoted by X,
The general coordinates also form a right-handed system.

In general coordinates xi, a repeated lower and upper index on
quantities either appearing as a single entity or as products will
always imply summation. Thus

i _ 2 3
= + +
ij Alj AZJ’ A3J

i _ a1 2 3
Ajai Ajal + Aja2 + Aja3

but no summation is implied in the expression
i b
Aj + Ai on either i or j.

All quantities, with the exception of x, and xi, with subscripts

i

are termed covariant components, while all with superscripts are termed

11

A 2k




contravariant components. It is customary in all the standard works
cited before to call vy and vi as covariant and contravariant vectors
respectively. Similar is the case with tensors too. However, it is
clear that they are the respective components of the same entity v or

~

T. Occasionally it is helpful to write the entity form such as

I S ]
v=yva, ng (30)
_ nij - k &
T=T éiéj Tkzé a (31)

. i ,
where as described before, a” are the contravariant base vectors, or the

reciprocal basis to a . The two bases are related as

i

at «a, =&t (32)

where 61 is the mixed Kronecker delta defined as

3

]
[N

st =1 if i
j

=0 if i #3 .

i

§1.5.1. Various Representations in Terms of a, and a’.

i
All quantities which follow certain transformation of coordinate
rules are called tensors. Thus scalars and vectors are also tensors of
i ordersT zero and one respectively. However, it is customary to name the

| quantities of orders greater than or equal to two as tensors. The order

of a tensor is determined by the total number of free indices used in

b TLAlso called ranks.

ri
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the description of its components. Thus T;k is a third order tensor;
covariant of order two and contravariant of order one. The total
number of components of a tensor T are given by Nm, where N is the
space dimension and m the order of the tensor. Thus T;k has 27 components $
in a three-dimensional space.

The dyadic representation of the unit tensor I (also called the

Idem tensor) in general coordinates is

I1=a.a (33)

adver

In eq. (30), vi and vj are the contravariant and covariant components of
. ij . ’
a vector v, while in eq. (31) T J are the contravariant components of a &

second order tensor T. The covariant components of T are given by

T =T, .agi:gj (34)

and (35)

1y _ 3i |

T =T

In entity form symmetry implies

A tensor is said to be antisymmetric if

Tij = -Tji

= e g

13

- P -——— : T TR




and
(36)
le - _Tji
or,
T = -T* .
Note that the transpose of the representation (34) is
T* = T..aJai
ij~ ~
and of (31) is
~% _ 1]
T" =T gjgi . (37)

1.6. Differential Operations in Curvilinear Coordinates.

The continuity and differentiability of vector and tensor functions
in general coordinates follow the same rules as those by functions of
real variables in multivariate calculus. Thus, let ¢(xi) be a scalar
function of general coordinates. Then its first differential is given
by

do = 24 ax’ (38)
X
where dxi are the differentials of the coordinates xi. Also since dxi

are the contravariant components of the displacement vector dr (cf. §2.),

we have




B s e

Scalar multiplication with §J on both sides of (39) and a use of eq. (32)

gives

Thus

ap = L ah) - dr
3x

Equation (41) defines the operator Y or grad as
d¢ = (grad ¢) * dr

where

It

e <]
"

Y]
E

grad

The divergence (div or V +) of a vector function is given by

i Y

divv=V+vyv=a - 1

ax

and the curl or Vx as

i v
curl v = V x v = 3~ x —
~ ~ ~ < i

X

1.6.1. Gradient of Vectors and Divergence of Tensors.

i
Let v be a vector function of x™, then

v
dv = — dxi
i

- Ix

15

(40)

(41)

(42)

(43)

(44)

(45)

(46a)

W
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(46b)

(47a)

(47b)

Thus there is a duality in the representation of grad v. It can be either

represented as

v 4 i 9y
— a or a —— .
~ 1

X

In this report, we take the first representation to represent grad v, i.e.,

v 4
grad v = —- a (48)
~ i -
ox
then its conjugate is
v
(grad v)* = al — 49)
~ ~ i
X
As is obvious from eqs. (47), we have the identity L
dv = (grad v) - dr = dr - (grad y)* (50) ,'
i ]
In the same manner, we define the gradient of a tensor as '
grad T = 2L a' | (51)
i<
X




The divergence of a tensor is then the trace of (51), that is

div T = 8T, ai (52)
i ~
9X

Below we list some important vector and tensor formulae involving
vectors and tensors under the operations of grad, divergence and curl,

[27]. &

(i) For two vectors u and v, the divergence of the dyad uv is

div(gy) = (grad u) -+ v+ (div Y)g (53)

(ii) If £ is a scalar, then

div(if) = grad f (54)

(iii) The Laplacian of a vector u is

Vzg = div(grad u) = grad(div u) - curl(curl u) (55)
(iv) (grad u) + u = grad(%|u|?) + (curl u) x u (56)
j
(v) For two vectors u and v ;2
(curl u) x v = [grad u - (grad 9)*] * v (57) L
(vi) div(grad u)* = grad(div u) (58) L
(vii) grad(u + v) = (grad g)* « v + (grad y)* cu (59a) L

1
(viii) curl(u x v) = div(uv - vu) (59b) 1




(ix) div[grad u - (grad g)*] = -curl(curl u) (60)
(x) I: grad u = div u (61)
(xi) For a tensor T and a vector u,
div(T + u) = (div %) « u + T* : (grad u) (62)
{dw
(xii) If T is a symmetric tensor and r is the position vector, then
div(r x T) = x (div T) (63)
(xiii) Let  be a_skewsymmetric tensor in a three-dimensional space,
then
=0, 9, =0, 2,,=0
(64)
2 = g1 » ¥3 = 3y 5 By3 = 3y
With Q we can associate a vector W, such that
(xiv) div & = -curl w (65)
(xv) div Q% = curl w (66)
For an arbitrary vector v
(xvi) Q - vVv=EwXxy (67)
(xvii) 2 (grad v) = w ¢« (curl v) (68)
For an arbitrary tensor f
(xvii?) w x T=Q T (69)

§2. Euclidean and Riemannian SpacesT.

+Refcr to 588 of Part I for a complete discussion on spaces.
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Spaces of various kinds, abstract as well as perceivable, are
needed to analyze mathematically the basic nature of practically all
problems in engineering science. The most widely studied is the
Euclidean space EN of dimension N. We shall usually be interested in
E3 space, though most of the results are immediately extensible to any
value of N. The most important property of an Euclidean space is that
in this space rectangular Cartesian coordinates can always be introduced
on a global scale. As an aid to form some intuitive ideas about spaces,
it is worthwhile to realize that the two-dimensional space formed by the
surface of a sphere is non-Euclidean since rectangular Cartesian coordi-
nates cannot be introduced in it on a global scale.

In rectangular Cartesian coordinates the position vector r of a point

from the origin is obviously given by

r=ex = erxy + e,X, + €3Xy . (70)

This type of global expression for the position vector r is not available

in terms of general coordinates x' either in the Euclidean or non-Euclidean

spaces. Nevertheless, the infinitesimal vector dr, which is the directed
segment between two infinitesimally close points, is fundamental to all
geometric considerations. According to Lanczos {28], the line element ds

(s is the arc length) which is the magnitude of dr, viz.,
ds = Idgl

is the fountainhead of metrical geometry. To fix ideas, let in E3 a

Cartesian coordinate system has already been introduced. Then the

et
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infinitesimal vector dr is given by

k
dr = gkdx
where for the purpose of further comparison we have written X, = xk.
The magnitude ds is then given by
(ds)? = dr - dr = e - e dxkdx2 3
k, &
6k2dx dx (71)

where le is the Kronecker delta,

6kl =1 if k =g

=0 if k # ¢ .,

. i
In E3 we now introduce a curvilinear coordinate system x~ . The

PR . . . i
infinitesimal vector dr is then a function of x, so that

dr = — dx~ = a.dx' (72)

~ 1 ~1

and

(ds)? = dr -« dr = (a * gj)dxidxj

Writing

D n A

we obtain



dxtdxd (74)

2 o
(ds) 8y

The coefficients gij are functions of xi and are called the fundamental
metric coefficients of the chosen space. The chosen space is still

Euclidean and fundamentally its metric coefficients are the constants

| Gij but because of the introduction of a curvilinear coordinate system

the gij are expressed as functions of xi. The introduction of a curvi-

. . . +
linear coordinate system in E3 does not change the nature of space .

It is obvious from (73) that gij is symmetric, i.e.,

i
Biy = By (75) 1

and using the condition that ds is an invariant, we can equate (71) and
(74). This equation immediately yields the expressions for the gij in
terms of the derivatives of the Cartesian coordinates with respect to
the curvilinear coordinates.

The name "Euclidean” for a space is due to the fact that in this

space the five axioms and five postulates of Euclid are assumed to be

true. Some important consequences on the basis of these axioms and
postulates are summarized below.
(i) The Pythagorean theorem for right triangles can be proved both §
in the infinitesimal and global regions.
(ii) Possibility of introducing rectangular Cartesian coordinates L

both in the infinitesimal and global regions.

(iii) Global parallelism. That is, a vector in E3 or E" can be

{ ﬁ tAccording to Lanczos [28] p. 236, this understanding was the motive force
i in overcoming the difficulties which Einstein faced in the year 1914 while
working on the theory of general relativity.
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displaced parallel f« itself on any space curve without a

change in magniti - Thus in an Euclidean space, a parallel

field of vectors is constant in magnitude and direction.

Now though the metric equation (74) has been obtained by introducing
curvilinear coordinates in an Euclidean space, we have only used the
results (i) and (ii), implicitly through Eq. (72), on an infinitesimal
basis. Further, no where in the derivation of (74) the result (iii) onm
global parallelism has been used. Following Riemann, we now take (74)
as the one and only axiom of a geometry in which the functions gij are
arbitrary but continuous and at least twice continuously differentiable
functions of the coordinates xi. Because of the general nature of such
gij's this geometry will be non-Euclidean. However, the possibility of }

introducing a rectangular Cartesian system locally in this general space

in an infinitesimal region still exists. These assertions have been
proved in §8.2. Spaces in which the Euclidean background has been
deleted and the formula for the metric is as given in (74) are called
Riemannian.

The purpose of the preceding two paragraphs has been to bring out
the subtle differences between the Euclidean and non-Euclidean spaces.
It so happens that a majority of analytical constructions (such as the 1-
gij considered before and obtained essentially from Euclidean considera-

tions) can immediately be interpreted in the sense of a Riemannian space.

This technique eliminates some of the abstractness surrounding the tensor

theory and allows us to obtain all the essential formulae of Riemannian
geometry while essentially remaining in the Euclidean space. This is the

scheme for further development of the subject in this report. It must be

'

e o
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realized that most of the Riemannian constructions are analytic by

nature since the human mind is not

surface of dimensions greater than

§3. Fundamental Tensor Structures
The fundamental metric tensor

use of the base vectors as

capable of imagining a curved

two.

and Transformation Laws.

gij was earlier defined through the

éj . (76)

. i sy
If the contravariant base vectors a” are multiplied scalarly then we

define the new second order components

gij _ ai

. ij . . .
To find the relation between gij and g J, we first write an arbitrary

vector A both in the covariant and

so that

>
4]
"

Taking the dot product of both sides of (78) by a, and using (32), we get

k - Bjk

a an

contravariant components

Ala (78)

-3

Al (79)

Similarly, taking the dot product with gk, we get

23
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Solving the set of equations (79) for Ak, we have

; . AiGik
: A" = (81
| C )
{ where
; _ .
E g det(gij) (82a)
} _ ik :
| = gikG (by Kramer's expansion) (82b)
:
and le is the cofactor of Bk in the determinant g. Comparing (80) and
(81), the required relation is

ik  cofactor of Bik in g

=G—=
g (83)

gik
g

ik :
The tensor components g~ are called the conjugates of the metric compo-

nents gk’ Equation (83) can also be expressed as

ij _ _
g - = (grsgZt grtggs)/g (84)

where the groups (i,r,2) and (j,s,t) separately have their indices in
the cyclic permutations of 1,2,3, in this order. Obviously glJ are also
! symmetric in 1i,j.

Having defined glJ, we find from Eqs. (79) and (80) that if the

contravariant components of a vector are known then the covariant compo-
nents can be obtained, and vice versa. In (79) the index has been lowered

and in (80) the index has been raised. These operations are called low-

s i)
ering or raising an index respectively through g1j and g - .
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§3.1. Relations Between the Base Vectors.

From eq. (32) we have the fundamental relation between the co-

variant and contravariant base vectors, which is

a

S BN |
a;, = a Gi (85)

Equation (85) shows that one vector from the reciprocal basis gi is
orthogonal to two vectors from the basis a,. Thus, for example, 2, X 3,

must be parallel to al, so that

al = p(a, x ay) | (86a)

where p is a scalar function of the coordinates. Further, since gl ca; =

we have

o |
1
W

3, * (2, x ay)

Using the vector formula given in (8), we also have

1 = - = . = .
p =31t (3 rag = ey c (a3 xa) =2yt (g 2y . (86b)

All the possible forms such as in (86a) can therefore be written as

where i, j, k are in the cyclic permutations of 1, 2, 3, in this order.

Similar considerations show that

a, = q(a" x a") (88)
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where £, m, n are in the cyclic permutations of 1, 2, 3, in this order.
From (87) and (88) using (11), we get

i

87 = pq(d?dn - 6760 (89)

2 k- 5%

so that
pq = 1.

Further, on the basis of the result (84) it is easy to show, using (87)
and (11), that

Having obtained the values of p and q, we can rewrite (87) and (88) in

the following useful forms

a xa =g eijk§1 (90a)
E}J x e}k = 71-_ eijk~1 (90b)
g

Note that from (90a,b) we also have

at =L M@ < (90¢)
~ Z/g— j
-2 ik
2 =72 ey 2 (90d)
where e1Jk is also a permutation symbol written in contravariant form

so as to be consistent with the summation convention.

We now use the rule of lowering and raising an index to base vectors.

It is obvious that

a (91)

al = g a (92)

A ad i A




If eq. (91) is rewritten using different indices as

2

a, =g..a 93
25 = 84,3 (93)

then the dot product of (91) and (93) gives

ke _
BikBje8 Bij

Kk
= 84185

From this we obtain the important result

ke k
] 6'
gjzg j (94)

In (33), the idem tensor I referred to general coordinates was

defined. We can also write (33) as

i= 6;§i§j (95)

Using (91) and (92), the other two representations are
x i3
I=8;522 (96)

= 1]
=8 §i§j (97)
The use of base vectors also allows us to write vectors and tensors in
the entity forms. The choice of a particular form of components is usually
dictated by the user according to his needs. For writing tensors, the

following forms can be used.
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(i) All components in contravariant form.
(ii) All components in covariant form.
(1ii) All components in mixed covariant-contravariant form.
In eqs. (30) and (31) we expressed a vector and a second order

tensor in component forms. Thus, for a vector

ve=va, (98a)

=v,a (98b)

For a tensor of the second order,

‘..,..,...,.

5 o il ¥
T=T §i§j (99a) R
= i3
= Tijé a (99b)
| - k|
! - T'jgié (99C) ’
i
| i i
| - 1ila'a, (99d)

Using (92) for gi in (99b) and then equating with (99¢c) we get

1 N

i in L8

T , = T . 100 _
3 T8 T (100)

Similarly, using (91) for a, in (99a) and equating with (99d), we get i

73 (101)

The dot placed before an index indicates which index has been raised or

5 lowered.
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Tensors of various orders can be written by using as many base
vectors as the order of the tensor. When there is no confusion in
recognizing which symbol has been raised or lowered, we may suspend
the use of dots. Thus

1112“'1p

T.”.
I1da iq

are the mixed components of a tensor of (p + q)th order; covariant of

order q and contravariant of order p.

§3.2. Transformation Laws for Vectors and Tensors.

We now consider the transformation laws for vectors and tensors under
a change of the coordinate system xi to ;i. Implicitly there is a func-
tional relation between the two coordinate systems, viz., the coordinates

§1 are functions of the coordinates xl. Thus
* = oted) (102)

We assume that the mapping or transformation (102) is nonsingular so that
the functions ¢l are continuously differentiable and their functional

determinant (i.e., Jacobian)

- Th
J = det(—) (103)
ox

is no where vanishing. This implies that the functions (102) can be

inverted to have

PSP o e S pras soney




(i) Vectors: !

The simplest but fundamental is the vector dr. When the coordinate

. i
system is x°, then as noted earlier

T
[a9
o}

[]

or i b.
— dx (105a)
~ i
3 oxX r
2
i
= a.dx (105b)

. i —i
On change of coordinates from x~ to x*, the same vector dr can be written

as
or —i
dr = — dx (106a)
~ —i
3x
- —i
= gidx (106b)
Obviously
a.dx) = a.dx (107) g
i'
By the chain rule of differentiation, we have f
t
3o (108a) :
dx” = — dx
—1i
9x
¥
— . '
dxt = 2. gy (108b)
axJ
Using (108a,b) in (107), we obtain ?
axt —
a, = ——ra 109a
2 7 ( )




e b o

i

Ei =g Y (109b)

A study of (108a) and (109a) or (108b) and (109b) is revealing. It
suggests that the set of quantities dxi and set of vectors gj follow
different transformation laws on changing from xi to ;i or vice versa.
Quantities which transform in the manner of (108) are called the contra-
variant components while those which transform in the manner of (109) are
called the covariant components. Thus dr is a vector whose contravariant
components are dxi, while the vectors a, are called the covariant base
vectors. (This was the reason for denoting the coordinates as xi and

base vectors as @i). Another simple vector which has covariant components

in a natural way is the gradient of a scalar. If f is a scalar, then its

first partial derivatives with respect to xi are iﬂ% . On changing the
9x

. —i
coordinates to X, we have

of _ dx= Of
axd axd ax’

(110)

which is exactly of the form (109a). Thus the first partial derivatives
of a scalar form the covariant components of the vector grad f.

Based on the above deductions we now state the transformation laws
for any vector A.

The contravariant components Ai of the vector A change to Xi on a

change of coordinates from xi to x* according to the laws

o

axj

Al (111a)
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Al =217 (111b)

Similarly, the covariant components A, transform according to the laws

i

_ h|
A, = a—f; A, (112a)
9x J
oxt —
A = TR (112b)
J X

It must be noted that the transformation laws for vectors are linear.
That is, the vector components in the new system are linear functions
of the vector components in the old system.
(ii) Tensors:
Consider a second order tensor f. Because of the tensor invariance,

we again have

- il
T T eiéj (113a)

K= —
T "aa, (113b)

Using the transformation law of base vectors (109a) in (113a), we easily

get
—k .~
e (114)
ax" ox?
Similarly
. i..3_
e (115)
—k .~
ox  9dx

32




Equations (114) and (115) are the transformation laws for the contra-

variant components of a tensor

For the covariant components we again have from the invariance

condition

J = k2
—Tkgég

!
L]

3
"
XY

Taking the dot product with g;, we get

ii - 2 k.2
Ti28 -3, = T2 g
But
— axm
a T4 T
P axt
so that
m
axt P

Taking another dot product with E;, we obtain

np —n sm

Similarly

ax" axP =
sm . S, M np

(116a)

(116b)

Equations (116) are the transformation laws for the covariant components

of a tensor.

ke R i T e g g
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Following the same procedure, we list the transformation laws for

the mixed components. Starting from

- i § =k ——b
T T.j§i§ T, .22
we get
m ,—k
R (117a)
P 3;p ax

- P s

18 -2 B gk (117b)
X 9x P

Similarly, it can be proved that the transformation law for the components
Til follow the same rules as given in (117).

Generally, we then have

ene ——2 —l j j 1 e e
Lttty ozl ox P ox IS L R
Tomeeem ~C 1 """ " m ——E_)Tj Jaeeed (118)
L ax P ax ! x4 172 g
Metric Tensor:
ij

Because of the special status of the metric components gij’ and g 7,

we consider them in detail. Looking from the point of view of the

definitions

= .

~ ’ gij §i gj

we immediately conclude that they are symmetric in i and j. If base




vectors are not brought into picture and the gij's are assumed to be
functions defining a metric in a Riemannian space then we can use the

formula

(ds)? dxidxj

to write
1 i, 3 1 i,
2 . = - J
(ds) 2(gij + gji)dx dx” + z(gij gji)dx dx (119)

By direct expansion, we can show that the last term in (119) is zero,
proving the symmetry of gij' Similarly gij is also symmetric.

The components gij are covariant, while gij are the contravariant
components of the metric tensor. Thus, the transformation laws for
them are
s 4, m

A~ 3x_ (120)

g =
0P x™ oxP 5

~np _ 3x" 3xP _sm
g =——-——8
X 9x

(121)

All the preceding transformation laws are linear. We therefore list
the following important conclusions regarding the nature of tensors.

(I) A tensor equation or expression has the property that it can
be obtained in any legitimate reference system, i.e., J # 0. If it is
correct in any one reference system then it must remain correct in any

other legitimate reference system. The above property is due to the




linearity of the transformation laws, since any component from the old

system is a linear function of the components from the new system.

(II) 1f all the tensor components vanish in any reference system
then they remain zero in any other system.

(I1I) Because of the linearity of transformation laws, a symmetric

tenser remains symmetric on coordinate transformation. Thus symmetry

is an absolute property.

§3.3. Algebraic Properties of Tensors.

1. The components of two tensors of the same order and structure*
can be added and subtracted according to the usual arithmetical rules.
If Aij and Bij are the covariant components of the tensors A and B, then

on addition or subtraction we generate a new tensor C whose covariant

components are

C.,. =A..  *B,. (122)

2. The outer product of two tensors of any order or structure is

obtained by arithmetical multiplication to produce new tensors. For
example, let A;Jk be a fourth order tensor, and let qu be a third order
tensor. Then the outer product is the new tensor
ijkm _ AleBm

C
Lpq £ 7pq

(123)

which is a seventh order temsor, contravariant of order four and covariant

of order three.

*
Variance.
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3. The inner product of two tensors is obtained by equating one
index of the first with one index of opposite variance of the second,
and, then summing over this index. Thus in (123) 1if we set £ = m and

sum over m, we obtain

ciik _ ,Likym

124
Pq m pq (124)

The resulting tensor is only of the fifth order.

§4, Differentiation of Vectors and Tensors.

One begins to feel the power of the method of tensor analysis after

the differential aspects of tensors have been completed. In this connection

we first consider the partial derivatives of the base vectors.

From the definition of base vectors a;, we first note the following

result.

A L S a5
Bxk Bxk axl axi X
da
- =k (125)
1
9x

for any values of i and k.

We now select any three indices, say 1i,j,k, and consider the following

three equations

L VA AT RS A

SRP! ~




98,
__%§ = _E_(e . ak) (127)
9x 3xi 3 -
o8

i} =._§3(§i . Ejk) (128)
BxJ ox

Adding (127) and (128), subtracting (126) from it and using (125), we

>
get i
i
agi E
—= ¢ a = [ij,k 129
o a, = [13,k] (129)
where
3g . ag. g, .
[i3,k] = 1k, 2ok ) (130)
2 j i k
X X X

The quantities [ij,k] defined in (130) are called the Christoffel symbols of
the first kind. These quantities are symmetric in i and j but they are
not tensors.
Equation (129) implies
agi
J

—1 - l13,k1a¢ (131)
9X

Taking the dot product both sides by gz, we then obtain

o T T TR T e R R T R T T S T e T R T T T W W —" g T ————— - -—— —

i, ‘32 = r¥ (132)

where




2

KL,
Fij =g [ij,k] (133)

are called the Christoffel symbols of the second kind. These quantities
are also symmetric in the lower two indices i and j, but are not tensors.

Equation (132) implies

)
—==T.a (134)
- ij~2

Equation (134) expresses the first partial derivatives of the covariant
base vectors in terms of the derivatives of gi,.

Having established the preceding definitions and results, we now
consider the partial derivatives of an arbitrary vector é.

Let A be an arbitrary vector, and we express it in terms of its
contravariant components Ai. Thus

s

Differentiating with respect to xk, we get

2
axk ax X

>
[ N
[
Q
R

3

a
1)
+
>

On using (134) and adjusting the dummy indices, we get

8A oAl g
—— = (— + T A )a
Bxk axk ik i

We use a special notation for the terms in parentheses,
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T

i
i _ 2A i,j
A,k _—axk + rjkA (136)

which is called the covariant derivative of the contravariant components

Ai. Thus

%4 1
= A,kgi (137)
3xX

To find the covariant derivative of the covariant components Ai of

the vector A, we start differentia’ ing

A= A,ai
h i
so that
9A BAi i aai (138)
— = ——=a" 4+ A —
Bxk axk 1 axk
Bgi
To obtain % > Ve differentiate the relation
90X
i
a~ »~a, =6
S T
yielding
aai i da, (139)
—~_ e« a + a . = 0 1
axk K i 8xk

4
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which implies

= -I'  a (140) ;

9A i
"k = Ai,kg (141)
ax
where
aAi j
Ai,k = ? - FikAj (142)

is called the covariant derivative of the covariant components Ai'

The comma notation will always imply the operation of covariant

o 8

——— e ———

differentiation. The name "covariant" for this type of differentiation

is due to the fact that the differentiated component gains one covariant
index with each application. For example, in (142), the covariance of

che components is now of the second order due to the ccvariant differentia-
tion. Similarly, Aik
s

covariant of order one due to differentiation.

is a mixed tensor, contravariant of order one, and

Following the method described in §3.2, we can introduce a transforma-~

tion from xi to x= in (136) and (142) to have L

—i J a7d
Al X X Ak (143) .
y Q1 3;'“ k7,3 b

and
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- J,n
Y ax~ 90X

Lo T T 7 A (144)
i, axl Bxl j,n
where
i _ AL =it
A" =—+T A (145)
, 0 —n rn
X

Ai,l = giz - FilAr (146)

A bar on the quantities in (145) and (146) denotes values in the new coor-
dinate system x*. The transformation equations (143) and (144) prove that
i

A and A,
i

K are tensors of the stated structures.
»

,k
An important point to be noted is that on comparison of (136) with
(145) and of (142) with (146), there is found no change in the forms of
the covariant derivatives in changing the coordinates from xi to ;i. Thus
there is no preference of one coordinate system over any other as far as
the covariant differentiation is concerned. Also in the case of rectangular
Cartesian coordinates, since the Christoffel symbols are zero, the covariant
differentiation reduces to partial differentiation. Because of these pro-
perties, the covariant differentiation is also called '"absolute differentia-
tion."
In obtaining the partial derivatives of a tensor as an entity, we
again encounter the covariant derivatives of the components in which the
tensor has been expressed. Thus, for a second order temsor written in

contravariant components, we have




Thus

= ij .. da %a,
jﬂ% -4 a8 t TlJ(——% a, + a, ——%?
X Ix J ax < ~d Lok

Using (134) and adjusting the dummy indices, we get

iTE = T8
ox ? J

Similarly

"
=]
=

o1 J
3,k% %4

T
where the covariant derivatives are

. ij . . g
I S S

K BT Tk 9k
90X
3T,
R % R - _ ot
Tii,k k" Taey T T5Tie

X

(147)

(148)

(149)

(150)

(151)

(152)




A VI = ey ™

Ricci's Theorem: The covariant derivatives of the metric tensor gij’

ij

g, or 6§ are identically zero.

This theorem can be proved by replacing T by g in (151) and (152) i

and using the expression for the Christoffel symbols given in (133). £
Thus .
|

gfi =0, g, =0, ai’k =0 (155)

and the metric coefficients behave like constants under covariant differ-

entiation. Because of this property, e.g.,

i3 Y
(g Tmn),k g Tmn,k (156a)
From (155), we have
3g. .
ij _ '2 2
K Tik8es ¥ TikBig (156b)
X
ag 3 i85 § 12
7i§; =187 - e (156¢) §

§5, Christoffel Symbols: Their Properties and Transformation Laws. IA
The definitions of the Christoffel symbols of the first and second kinds L

have already been given in (130) and (133) respectively. It must be restated ;

that these symbols are not the components of any tensor. The transformation '
laws considered in this section will prove this assertion.
In taking the divergences of vectors and tensors, a contracted

Christoffel symbol of the form I'_, appears. To find its value, we use

i
13
equation (82b),




_ m
g <8 lmG

where G‘Lln is the cofactor of 8om in the determinant g. Thus

9g
ag. - GS?,m E'm (157) 9
axJ BxJ
and since ?
' = gg™" (158) é
i
we get
3g
28 o g™ ’Lj‘“ (159)
ax’ ax

Now in (133) setting & = i, and summing over i while using the property

{S. VI

that gij is symmetric, we get

"1
i
15728 3 F

On using (159), we have ¢
i 1 ag i

r = = (160a) i

13728 3 i

a —
= —(invg) (160b) J
axj 1

§5.1. Transformation Laws for Christoffel Symbols.

i

Let xi and X be twn general coordinate systems. We assume that xi t

45




i

and ;i are functionally related and that the Jacobian of the transforma-

tion is not zero. Recall from (120) and (121) that the metric components

transform as

k .. 2

— X 39X
g.. =8 ., T —— (161)

ij k2 Py a;j

_ el
Sl _ ngL 3X" 3x (162)

Bxk 3x£

From (130) and (133), the Christoffel symbols of the first and second

kinds respectively for the coordinates §i are

3g. dg. 3g
—_ k
[T,k = 55+ 35 - 2 (163)
X ox ox
= _ ki
Fij =g [ij,k] (164)

If we now use (161) in (163) and perform the indicated differentiations,

we get

- i h| k i 2.3
[2m,n] = [i},k] %a—fm—ai_n+ g, -2 (165)
X 9x 9x I 5% ox ox
—hp . - .
Inner multiplication by g © (given in (162)), gives
- s oxP ox’ axd | oxP a%d
rll "'r..—"-:’r—_"n-+—-j— par g (166)
m 1 5x® ax ox IXx~ 9x 9x

Equations (165) and (166) are the transformation laws for the Christoffel

iy
i
tg
2|

T e,

e o e e el ]
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symbols. Because of the appearance of the second derivatives of the
coordinates on the right of eqs. (165) and (166), the symbols do not
transform like the components of any tensor. This proves that the
Christoffel symbols are not tensors.

A formula expressing the second derivatives of coordinates can be
obtained from (166). On taking the inner multiplication of (166) by

r
X
—— , we get

9x

32x" - TP §§£ _F axt axd (167)
aaE® Mmogpp 13 b m

§5.1.1. Formulae: Cartesian to Curvilinear and Vice Versa.

All the preceding formulae are applicable for any space and for any
two general coordinate systems. In engineering applications, we usually
transform from a rectangular Cartesian to a curvilinear and vice versa.
We consider two cases.

. i . =i a1 s
(i) X~ are Cartesian and x~ curvilinear.

(ii) X are Cartesian and x° curvilinear.

Case (i):

If x1 are Cartesian, we denote xi as decided earlier, by xi. For

this case

so that (168)

e ——

e DMl ke et

-




, - i
For brevity of notation, we denote xi = £, and also remove the over

bar from the quantities in Ei. Thus

9X, 9%
o= —E K (oum on k) (169)
S NI
. i.,.]
ij _ 3& 9&”
g %, 3% (170)

To find the partial derivatives of the curvilinear coordinates with

respect to the Cartesian, take the inner multiplication of (170) with

axr
_ . Thus
agd

i .. 90X

g_i = gt _Tli” (171)

r 9E

Recall, from (94) that
mj _ m
g8 = 0§ (172)

From (167), the second partial derivatives are given by

Bzxr p 3xr
—~——— =T — (173)
aggagm im BCP

n
Inner multiplication of (173) with %ﬁ* yields the formula for the
r
Christoffel symbols in terms of the second derivatives of the Cartesian

with respect to the curvilinear coordinates

r 32y
- %5— ———iij (174a)
3 oty
1}
48
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3 2
rt xs 9°x

aet aelaed

(sum on s and t) (174b)

As an application of the preceding results in a two-dimensional plane
in which the Cartesian coordinates are X) =% 9, =y and the introduced
curvilinear coordinates are 51 =, £2 = n, we have the following formulae.

In all the formulae given below, a variable subscript denotes a partial

derivative.

= x2 + y2 - = x2 4 ¢2
Bl TXE T Ve o By T XX Y VY, gy = x2 42

gl =cl+el, gl =¢n + Egny » 872 = nZ + 02 (175)

gl! =g_2£’ gl2 =ﬁ£, g22 =g£

g g g
where

8818y ~ (8% = (xy, - x y)? (176a)
= (g - n )7 (176b)
e R N O N AL n, = %/’ (177)
rl) = ley, ii—é—l + gu(ai}f - 2 aii"')]/Zg (178a)
= (ynxgg xnygg)//g (178b)
12, = ley, a—i%z- + glz(aiz2 - 2 aiﬁzn/Zg (179a)
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= - Ve
(xgyrm ygxnn)/ g ‘ (179b) »
og g 28
1 12 - 22 __ 22
F22 ™ (8 =577 = ¢ ~ 815 5, 1/%8 (180a) 1
’}
F
= (ynxnn - xnynn)//g_ (180b) ;
g g 3g
2 _ P12 Bip 11
M1~ 8@ g~ 75, ) ~ 81 3¢ 1/%8 (181a)
= - Vg
(xiyié ygxgg)/ g (181b)
) 1
F12 =T
og og
11 22
= (822 T30 - 812 T;)/Zg (182a)
= - Vg
(ynxgn xnysn)/ g (182b)
"2 =™ {
i
og og 4
= 22 11 ;
4
== - /_‘ :
(xgygn ygxgn)/ g (183b) ﬂ
Also ‘~»
pioe 2 =L (184a)
11 12~ 2g 3¢
TR (184b)
2g 9




Case (ii):

=i . .
If we treat X~ as the Cartesian coordinates, then we denote them as i

X, Also writing X' = 51 in (167) we get

22¢" = -rF g agd (185)
Bxﬁaxm ij sz me £

On using (171), we can write (185) as

. ¥
92" r jq et Pa '
3x 0 Fii8 3 (186a)
2% %*n J Xy 28 §
or f’
r ip jq sz me :
= =, 8 g I (186b) ;
ij 5P 3¢ M

Equation (186b) expresses the second partial derivatives of general coor-
dinates in terms of the first partial derivatives of the Cartesian with
respect to the general coordinates. Equation (186a) is suitable for
obtaining the Laplacian of the general coordinates. For, on contracting i

the indices ¢ and m, viz., setting ¢ = m and performing the sum on m, we

get

where




32
V2 = ——— (sum on m).
meaxm

Thus in two dimensions, writing x! = X, x4 = Y, El = £, 52 = n we have
2 = 1 _ 1 _ 1
Ve = (285T1) ~ 81Ty ~ 8pT11078 (188)
2. _ 2 2 _ 2
Vin = (28,5075 - 81179, ~ 8pT1p) /8 (189)
where
32 32
L i
Ix ]
A second order differential operator defined as
32 9 32 82 0
D= 832 507 7 %812 Jean 811 3,2 (199)

and the use of eqs. (173)-(181) yields another form of the Laplacians,

v2g (x,Dy - yan)/g3/2 (191)

V2n

1

(yDx - x,Dy)/g3/2 (192)

§6. Gradient, Divergence, Curl, and Laplacian

(i) Scalars:

There are two types of scalar quantities. One is called an absolute

scalar or an invarijiant, while the other is called a scalar density.

. i,
Any function of the coordinates x  is called an absolute scalar if

. . i —i
on coordinate transformation from x~ to x~ the value of ¢ does not change.

Thus




o (x},x%,x3) = p(x},x2,x3) (193)

There are scalars which on coordinate transformation do not trans-

form like (193). As an example the function g, viz.,
g = det(gij)

is not an absolute scalar. On coordinate transformation
g = det(egy,)

On actual substitution of (161) in the above determinant and by expansion,

we obtain

'g‘ = (J)?g (194)
Similarly

g = N% (193)
where

axt. = Th

J =det(=) , J = det(—) (196)
ax’ 3xJ

Thus g or /g is not an absolute scalar, its value in some other coordinate
system is given by J/E.
Multiplying the absolute scalars, vectors, or tensors, by /g we get

the corresponding densities.

In §1.6 we have already defined the operator V or grad as

ey

B R R




grad = V = ai —37
~ ~ i
ax

If ¢ is an absolute scalar, then grad ¢ is a vector given as

grad ¢ = a' —éir
~ i
X

so that the covariant components of grad ¢ are

(grad ) = 2% = (198)

1
: 3xX ’

Using the method of raising an index (cf. §3), the contravariant com-

ponents of grad ¢ are
(grad ¢)* = gk 20
ax
(1i) Vectors:
The divergence of a vector v was defined in (44) as
: v
div ‘: = gl . __:.{
F ox
On using (137), we get
div v = in(g - a,)
= vl st = vt (200)
»i7] »1

From (136)

|
i
i
l
f
3
]

(199)




; 9 ax J
so that on using (160b),
b
dv v = = (/g v (201) ‘
/E ax

o dRAT.

which is a scalar. Another form is obtained by using (141), which gives

t<g
o>
[+

.
o

div

=g A . (202)

The gradient of a vector v appears quite often in fluid and solid

mechanics. In §1.6.1, we decided to choose the definition of grad v as

Y i
’ grad y = — a (203)
X
and that of its conjugate as
s * i aV
(grad v)* = a~ —= (204)
axl

3
Using the expressions for —l% from 84 we can write it in the following

X
forms
i k
grad v = v 3@ mixed components. (205a)
’
i
| -~ ik )
= gijv a s covariant components. (205b)
Jk= S
ik
=v,aa, covariant components. (205¢)
b
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= ng 1kaiaj , contravariant components. (205d)
Lk=iS

In the same manner (grad v)* can be written. For example, one useful

representation is

(grad y)* =v a, (206)

In mechanics, we sometimes need the inner products of grad v. Using

the definition (29), we easily obtain

(grad Y) : (grad v) = vikvki (207)
* kn i m
(grad v) : (grad v)" = 88 v,kY,n (208)

where both are scalars.

The curl of a vector v is defined in the usual way.

J' ov

curl v = a° x =
b N axd

=v (Jxak)

Using (90b), we have

curl v =

ﬁ e vy 48y (209)
g b

Thus the contravariant components of curl v are given by

. v ov
(curl b = £ - ) (210)
/g ax? Ix




where i, j, k are in the cyclic permutations of 1, 2, 3, in this

order. :

(iii) Tensors:
The divergence of a tensor of second order has been defined as
{(cf. eq. (52))
T k

div T = —x @
Ix

Using the derivatives given in (147)-(149) we obtain

div T = T'fa, (211a)
- ngTij’kgl (211b)

Thus div T is a vector whose contravariant components are given by (21la,
c) and the covariant components are given by (211b). The operation of
divergence thus reduces the order of the tensor by one.

For a divergence-free tensor

ik _ g (212a)
K
or,
jk -
T (212b)
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or

If a tensor is such that

i
3,1

(iv) Laplacian of a scalar:

of a vector, viz., (142), to have

0 ) = __939__ - rr 9%

»1753 ) Bxiaxj i] axr
Since FF. = F?., hence
ij ji

(0 ) =10 ) .,

o153 ,i7 .1

using (202),

V2™ = —giJFW.

1)

(212¢)

(2124)

then it is called a covariant divergence-free tensor.

The Laplacian of an absolute scalar ¢ can now be obtained by first

using the¢ formula for the covariant derivative of covariant components

(213)

that is, the covariant differentiation of absolute scalars is commutative.

Having obtained the covariant derivative, we now obtain the Laplacian

;. 2
v24 = div(grad ¢) = glJ(—i%iLT-- re JEL) (214)
9x BxJ i3 axr

It is easy to verify that if ¢ is a curvilinear coordinate, xm, then

0 ke

ek s i 1K

T i




————

which was obtained earlier by another method (cf. (187)). Similarly,

if ¢ is a Cartesian coordinate, X then

ij azxn T axn
e A T
9% 9X 9xX
or
ij azxn an r
g1 —Tr +—F Vi =0 (215)
axax3 9IX
As an example, consider the Cartesian coordinates X, = X, X, =y

in a plane, and let x! = £, x2 = n be the curvilinear coordinates. Then
introducing the operator D defined in (190), the equations for x and y

as dependent variables are

Dx

-g(x,7%¢ + x V2
g(XE L+ x n)
(216)

Dy

-g(yszé + yann)

Equations (216) have been used in Ref. [29] to compute the coordinates

for arbitrary shaped two-dimensional bodies.

§7. Miscellaneous Derivations.
In this section we consider a few derivations which are used in the
study of geometry and mechanics.

(i) Intrinsic derivative:

k . .
Let xk = x (t) be the parametric equations of a space curve with t

as a parameter. A vector function u of position will then also be a




ap—_—— 1

——

function of t on this curve, viz.,

u = g(xk(t))

The intrinsic derivative, also called the total or substantive

d
derivative, of u with respect to t is defined as 5% . Writing

we get

The quantity

60

(217)
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is called the intrinsic derivative. We can also write (217) as

6ui - aui dxj + urri dxj
st axj dt rj dt

i dxj

= Ty (218)

As an example, in fluid mechanics, the velocity vector u is defined

as

where t is the absolute time. Since dr = a dxi, so that

u=a axt

~  ~i dt
L
:

= a ui
~1i

£ axt i :
Thus u™ = ==— are the contravariant components of u. The components u '

dt

can also be explicit functions of t beside being implicit, but a, are only

i
implicit functions of t. Thus

61
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du gyl 1 934 *
ac “ae 1YY 1t
1 1 . !
du j du ir j
= (S—+u =Da, +u'T, uwa %
at ) o1 ij° %r f
4
; 1
Ju j i
= —+
Gg tvu “,j)§1 (219) u
which is the well known substantive derivative defining the acceleration

vector.

<, PRIy S L3

The intrinsic derivative of a tensor of any structure can be found

by using the method followed in obtaining (218). Thus for a tensor i,

T AP wy Y

ii:i'ruluz...us a sesg arlo-oarp -
dt St rlrz---r ~uy ~u_~ ~

Higher order intrinsic derivatives can be obtained in a straight

forward manner. Thus

s2ul | 6 outy 1 @) ax
.3 4tk dt

Intrinsic differentiation in general is not commutative. Other uses

of intrinsic derivative are in the definitions of a parallel field of

vectors and of the geodesic curves in space. i
A field of vectors A along a curve xi = xi(t) and in any space are

called parallel if at all points of this curve where

A= aGN())
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we have

ag 0 2
EF = (2 Oa)

— em——— — S —
- -

Thus in an Euclidean space, the meaning of eq. (220a) is that the
components of A referred to the rectangular Cartesian coordinates are
constants.

For arbitrary coordinates and in any space, a field of vectors is

called parallel when

- +ATrE X _ (220b)

Equation (220b) forms a system of N equations in an N-dimensional space
and can be solved by specifying Ai at an initial point t = to, [15].

The geodesics or the geodesic curves of a space are the curves along
which the distance between two points is minimal. Let s be the arc length
along a curve, then we define the unit tangent vector field t(s) whose
contravariant components are given by

i

d
b =45 8y

The field t(s) is said to be a tangent vector field on a geodesic

when

= (221a)

——
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Using again the definition (217), we obtain the equations for geodesics

as

i r . j
d?x i dx dx’ _
12 + ri ds ds - 0 (221b)

Thus the geodesics are the solution of the second order equations (221b).

(ii) Magnitude of a vector:

The magnitude of a vector u is a scalar. This magnitude is obtained

by taking the scalar product of u with itself. Thus

= (éi . éj)uiuj
= gijuiuj (2223)
Also
(w2 = gijuiuj (222b)
= ujuj (222¢)

In the same manner, the magnitude of grad ¢ denoted as lgrad ¢| is

given by

lgrad ¢[2 = glk 28 3¢ (223)
axi ij

In two dimensions, writing x! = £, x2 = n, we have

[ VNPTLTIEYY S
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e

lgrad 4|2 = [8,,(6,)% - 28,500+ g), (¢ )?)/8 (224)

(iii) Angle between two vectors:

The angle § between the two vectors

~1

and :
!
is given by 5

T g

i T AR
: cos 6 = gijule/ (ukuk)(vlvl) (225)

The two vectors are orthogonal if

i3 _
giju vl =0 .

The angle between any two coordinate curves at a point is given by the

base vectors corresponding to these curves. Thus the angle eij between
J

i .
the curves x° and x° is given by

2 cos . = (a, - gj)//lgi Igj

= gij/v’gngjj (226)

where, since 1 and j are fixed numbers, there is no implicit summation

on repeated indices. If xi and xj are orthogonal, then gij = 0 for 1 # j.
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(iv) Cross product of vectors:

For the cross product of two vectors u and v, the use of eqs. (90)

F yields the result

uxys= /g e, ujv a (227a)

1 (227b)
g

giving the covariant and contravariant components respectively.

(v) Physical components of a vector:

In a three-dimensional space if all the coordinates are orthogonal,

then as noted in (226)

gij =0 for 1i#j
and the non-zero terms are gll’ g22, g33. It is customary to use the
notation
1
2= =
LT gy T T &
1
2 2 =1
hy = 83 = 732 (228)
g
1
h2=g = e— L
33
3 33 g
: and
= = 2 .
8 = 81182833 = (hyhyhy) (229)
66
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The covariant and the contravariant components of a vector v

referred to the orthogonal coordinates are then related as

v, = h2vl | v, = h%v2 s vy = h§v3 (230)

The physical components of the vector v are the orthogonal projec-~
tions of the vector on the coordinate axes. Denoting these components

by Vi (subscript i is just a label), we get

1 1 1’1
V2 = h2v2 = v2/h2 (231)
vy = h3v3 = v3/h3
The magnitude of the velocity vector v is then simply
[v]? = vl2 + v22 + v32
. (232)

1 2 3
= vlv + v2v + v3v

(vi) Arc lengths, elements of area and volume:

In any coordinate system (orthogonal or non-orthogonal) the arc

lengths are easily obtained by the metric equation

Thus for i, j, and k as fixed numbers, we have




(ds) =Ygy dxi (no summation) (233)

xj = const.

k

X™ = const.

is an arc length along the x" curve.
Similarly denoting the element of area on which the curve xi =

const. as doi, we have

~doy = lgzdx2 X §3dx3|

= [g)y84; - (8,5)2]"/ ax2dx3 (234a)
do, = |§3dx3 x gldx1|

= [8;,845 - (g13)2]1/2dx1dx3 (234b)
do3 = Ia}ldx1 x gzdle

= [8,:8,, - (glz)zll/zdxldxz (234¢)

The element of volume is

v =123, - (g

x a,)dxldx?dx3
= /g dx!dx2dx3 . (235)

§8. The Curvature Tensor and Its Implications.

Questions regarding the nature of spaces have been raised and dis-

cussed, mostly by philosophers, at different stages of human civilization.
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A definitive philosophic work on this subject was published by Immanuel
Kant in the 'Critique of Pure Reason' in 1787. Despite a work of such
brilliance, the description of space remained shrouded in mystery and
abstract formalisms. Scientific answers to the questions regarding
space started emerging after the works of Gauss and Riemann in the first
half of the nineteenth ceantury. In this section we shall try to define
a space and its structure through analytic constructions as simply as
possible. The material of this section supplements the discussions of
§2.

After gaining a working knowledge of basic tensor rules and par-
ticularly after having the metric equation (74) at our disposal, we now
pose the following simple problem. '"Is it possible to devise a coor-
dinate system x! = £, x2 = n in a two-dimensional plane such that the
element of length between two infinitesimally close points be given by

the metric
(ds)? = (dg)? + (cos?g)(dn)? 7" (236)

In essence, the problem is to find whether in a two-dimensional plane
=1 = cos?t?
can we have 81, and 897 cos“g
The answer to the above question is that we can never introduce
the above metric in a plane. In fact, as we shall see later, this
metric suits the surface of a sphere which is a curved two-dimensional

space. Recall that in a two-dimensional plane we can introduce Cartesian,

and plenty of orthogonal, or non-orthogonal curvilinear coordinate systems.

Each chosen coordinate system yields a specific set of the functions gij'




——e

For example in a plane:

gll =1, gl2 =0, 8yy = 1 , for Cartesian coordinates.

=1 0

(6)2 , for polar coordinates.

» 812 T V2 8y

81 = 1, 80 = -2cos a , 8yp = 1 , for oblique rectilinear

coordinates with a as the included angle between the coordinates. We
can go on adding to the above list, but the gij's of (236) are forbidden.
These considerations suggest that there must be a condition or a set of
conditions on the gij's which must be satisfied in each specific space.
To get started on this problem, we proceed as follows.

Let A be an arbitrary vector and xi a coordinate system in our
chosen space whose structure we wish to study. We have the result from
(141) that the partial derivatives of the entity A can be expressed in

terms of the covariant derivatives as

Differentiating partially once more with respect to x" and using (140),

we obtain

32 oA, .
= = 1,0 _ ]"p,A )aJ
ax"ax" ax™ my p,n =
=@, ) al +rta ) (237)
. J,nn ,m~ mn j,4%~
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where a comma, as before, denotes covariant differentiation.

Proceeding again from

A .

— = A, maJ

axm J’ ~

we obtain
32A . .
> J L J
—— = (A, ) a + T A, a (238)

axnaxm j,m” ,n mn j,8&~

Subtracting (238) from (237), we get

%A 32a 2 j
mlﬁn - n‘vm B R-'nmAILaj (239)
0X 90X 09X 9X J
where
O T S N LA L R L : (240)
+ jnm ax? Jm e dn ns jm ms jn

It is a direct algebraic problem to show, using eq. (152), that

_ ot
CAj,n)’m - (Aj,m),n = R mfy (241)

The structure of the quantities R?jnm shows that they are the
components of a fourth order tensor, covariant of order three and contra-
variant of order one. This tensor is known as the Riemann-Christoffel

tensor. It is formed of F% and their first partial derivatives. 1In

jk

turn we may state that the Riemann-Christoffel tensor is formed purely

of the metric coefficients and their first and second partial derivatives.

tpw

L%,




From (241) we conclude that the covariant differentiation in a
space is commutative provided that

RZ

Cjom = O (242)

for all values of its indices and for all coordinate systems introduced
in the chosen space.

Suppose in the chosen space it is possible for us to introduce a .
set of rectangular Cartesian coordinates on a global scale. The metric
tensor component: are then the Kronecker deltas 5ij whose values are

either one or zero. Thus their partial derivatives and so also all the

Christoffel symbols F%

ik are identically zero. The vanishing of all the

Christoffel symbols makes (240) zero and so eq. (242) is satisfied.

The vanishing of a tensor (here R%jnm) in one coordinate system means
that all its components should remain zero in any other coordinate
system introduced in the same space. (Refer to the three properties of
a tensor expressions in §3.2; listed after eq. (121)). It must be noted

that when the coordinates are not rectangular Cartesian then all the 855

and also the F;k are functions of the coordinates. Nevertheless, eq.

(242) will still remain valid. Spaces in which eq. (242) remains valid
are called Euclidean. Such spaces are also called flat because as will
be seen shortly, the tensor R%jnm determines the curvature of the curved ¥

space. Spaces for which eq. (242) is not satisfied are called Riemannian

or non-Euclidean.

It is now obvious why pure reasoning fails to provide a classifica-

tion of spaces. The idea of a curved spice is implicit not only in the

"




values of the metric gij but also in their distributions (derivatives).
Admittedly, the whole burden of our results depends on one axiom, viz.,
the axiom of the Riemannian metric, eq. (74). However, various physical
experiences such as Einstein's theory of gravitation, and the consistency

of the derived results forces one to accept the validity of the axiom

-

of Riemann. ERS

B

§8.1. Algebra of the Curvature Tensor.

From (240) it is obvious that

2 2
R.jnm - -jmn

(243b)

(243c)

A fourth order tensor is now formed by contracting the upper index

_ £
Rrjnp - grSLR-jnp (244)

The tensor Rrjnp is called the covariant Riemann curvature tensor. It

can be represented in the following three alternative forms, [11].

g
- _é_[ L ] - _ﬁ_{g r* ] Lo e

R_. =
rjnp an grlrjp rd in

—I‘j o
Bxp P ox

g
L rf L s £ s
+ —_ T -
an axp grz nsrjp grQFpstn




e AT

3 5 3 g
R_. = —ljp,r}] - —lIjn,xr) + T L} - T, [rn,2 246
rinp axn[Jp, ] axp[j »1) jn[rp, ] Jp[ n,2] (246) i
2 2 2 2
g, g 3°g
Rrﬁl = % - + rjn - 'rn )
Jnp 3t ax®  axaxP  axdoxP  axTax® i
-1
- )
t ,
+ g “(lin,s]lrp,t] - [ip,s]lrn,t]) (247)
where [ij,k] and P;k are the Christoffel symbols of the first and second ¢
kinds respectively as defined in (130) and (133). v
From (247) it is obvious that ;
1
R . = -R, (248a) 3
rjnp jrnp o
¥
%
R_. = -R_, (248b)
r_']np r_]pn
R ., = R . (248c) d
rjnp nprj A
i3
and
R . + R .+R . =0 (2484d)
rjnp rnpj rpin
so that i
1
Rjrnp + ijrn + Rjnpr =0 (248e) g
‘ ]
- From (248) we also note that
=0 if r=3 or, n=p (249)

D e T
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Thus apart from sign, the only non-vanishing components are of the form

(250)

’ *

Rrjrj Rrjrp Rrjnp

where r, j, n and p are distinct from one another. The total number of

distinct components for a space of dimension N are
N2, o
12(N 1) .

Thus the curvature tensor has only one component in two-dimensional

space, six in a three-dimensional space, twenty in a four-dimensional

space, and so on. It can be seen immediately that in a two-dimensional
space, the component is R1212, while in a three-dimensional space the

components are

Ri212 * ®1313 » Ra323° Ruzpz o Ruzao o Rysgs (251) §

2 e
oy

(Refer to Part III, §2 for an expanded form of the equations for a

=

three-dimensional space.)

e

i ills

It should be noted that for a flat space

gy

Rrjnp =0 (252)

for all values of the indices r, j, n and p.

S sl

; §8.2. The Possibility of Local Cartesian Coordinates in a Riemannian Space.

We are now in a position to investigate further the curved nature of

Riemannian spaces. In this section we will show that in a Riemannian

space it is possible to introduce a coordinate transformation in which




all the metric coefficients are constants and all the Christoffel

symbols are zero locally, (cf. §2).
J

Let x° be a curvilinear coordinate system in a curved space, viz.,

14km are zero. We now introduce a coordinate

transformation from x to ;j at a fixed point of the space denoted by

not all the components of R

subscript 0, as

= h| — h| L J r _ T 5 s
W= - w20 e - xD) & - x) (253)
Thus
ax? _ ] 3 r _.r
——a > Gp + (I‘pr)o(x xo) (254)
X
and
SR (rJ BNCEE xr)ﬁ‘— (255)
L 0 0 ™ . i
. :
Differentiating (255) with respect to x~, we get j
2,.J 2P H‘
32x ax j r 9x |
, 0 +(rd ) (r 2 " - xp) X ’
; et e pro0 a?:“‘ 0 0T
Thus i
S j
S X v o _(d = —(pd
(__1 )0 (Fpr)O s (1‘2 )0 (256)
ax ax
Evaluating (166) at xé, i.e., ;i -+ xé, and using (256), we get
+P - S P P _
(l"m)0 (r ij)0 8.8, 163 (Flm)O éj 0 (257)




This proves that the Christoffel symbols at the point xé in the new
coordinates are zero.

Now using (161), we find that

(Eij)o = (85,09 (258)

Further differentiating (161) with respect to ;k and then using the

expression for the derivative of gij from (156b), we get

—2dy =0 (259)

The properties (257) and (259) are peculiar only to Cartesian coordinates;
hence the stated result. It must be restated that the preceding results,
both for gij and P;k’ are applicable only locally and not on a global
scale. These results also show that the basic nature of a space cannot
be guessed simply by gij and F;k but by the derivatives of F;k.
The coordinate system Ej discussed above is also called a geodesic

polar coordinate system.

§8.3. Ricci's Tensor.

A contraction of ¢ and m in the tensor R% yields a tensor of the

jnm

second order which is called Ricci's tensor. Ricci's tensor of opposite

sign will be obtained if % and n are contracted. Thus Ricci's tensor is

e

R = R =g stnﬂ, (260)

In expanded form it can be represented in the following two forms:
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From (240) i

_ A B L s _ 4.8
B s zrjn Pnsrjl PZSan (262)

X 9x

From (261) it is obvious that the tensor R n is symmetric,

s VPR D QKPR 1 0

J
R, =R 263 !
jn nj ( ) i
since i

law]
=~
1]
—
‘_?E‘.H-
PRy

The tensor representation (262) is of much importance in the Einstein
theory of relativity because it is symmetric and has as many components

as the metric tensor gij' A scalar R can be obtained by the inner %

jn

multiplication of g and Rjn’ viz.,

R = gl (264)

and is called the curvature invariant. ¥

§8.4. Bianchi's Identity.

If we differentiate a second order tensor




and find the partial derivatives

AT 32T

3
meaxn ax“axm

then subtracting the two, we obtain

3 -« =-R2 T 2

(Tik,m ,n Tik,n),m vinm 8k R-kaniZ (265)

We now take the covariant derivative of eq. (241) both sides and using

the notation

we write three equations by cyclic permutation as

- _ o2

(ij,n),r (Tjn,m),r R‘jnm,rAIL R-janlLr (266a)
=t _ o2

(Tjr’m),n (ij,r Y T (266b)
__ot ok

(Tjn,r),m ~ (Tjr’n " R.jrn’mAQ R.jrnsz (266¢)

Adding eqs. (266), using (265) and (243b), we get

£ L 1)

+jnp,r jpr,n ea,p - 0 (267)

This is the first form of the Bianchi's identity. The second form can

be obtained by using (244) and using the fact that the metric coefficients

gij behave like constants under covariant differentiation. This form is
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Rojnp,r ¥ Rujpr,n ¥ Rujrn,p = ° (268) g

- TR T

§8.4.1. A Divergence-Free Tensor.

The use of Ricci's tensor and the Bianchi's identity produces an

: important tensor. Inner multiplication of (268) with gmpgjn and use

of (248) and (260) yields

= jn _ . imn _ ,.mp -
(s RJ.n)’r (8 Rjr),n (g Rmr)’p 0 (269)

R ST el o ISR, VL1 (UM,

The first term under covariant differentiation in (269) is the curvature

invariant R defined in (264), so that

T

[

- 2(eim =
R -2 R,) =0 (270)

’

If we now introduce a mixed tensor

n
R (271)

¢ =0 (272)

That is, the covariant divergence of the mixed tensor is zero.

In place of the mixed tensor, we can have a contravariant symmetric

tensor by first writing

Pq :
R = R H
jr gjpgrq .

]
i




Thus (270) becomes

- nq _
R,r zgqu)n 0 ’ 1
Inner multiplication by grg, and because of symmetry of an, we get j
»
o A (273) ;
3 i
!
where 3
. P . ¥
gt - gt 2 gte (274) !

Equations (272) and (273) state that the tensor components defined in

T g A TN

(271) and (274) are divergence~free. The tensor Eij is symmetric and

is called the "energy-momentum tensor." Both eqs. (272) and (273) state

a conservation law of much importance in physics. Note that the covariant

components of the energy-momentum tensor can be obtained from (274) i
by the usual rule of lowering an index. Thus S

E .. =R (275)

1
ij 15 "7 843} -

§9. The Geometry of the Event-Space.

An event~space is a coordinate sgpace in which the time variable is
also taken as one of the coordinates so as to have a space-time continuum
in which physical events occur. All the tensor theoretic results obtained

so far are obviously applicable in this space.

The geometry of the event-space has all along been important to the !

theory of relativity. However, it is the opinion of this author that all

i
H
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mechanics, whether relativistic or non-relativistic, should be treated

at least in the start as a unified subjectT. The rigid classifications

of relativistic and non-relativistic mechanics deprives one from a
correct understanding of the mechanics and of the geometiy associated
with it. In this section we first briefly state the basic postulates 5
of mechanics and go on to explore some of the consequences from a
geometrical standpoint.

An inertial frame of reference is precisely defined by Newton's ¢
first law of motion. However, we can rephrase it as: An inertial
frame is a coordinate frame with respect to which bodies, under the

absence of external forces, move with zero acceleration.

The two basic postulates of mechanics are:

WY B o

(I) All physical laws are form-invariant when transformed between

inertial frames.
(I1) Light travels isotropically and with a constant finite

speed c(= 2.998 x 1010 cm/sec) in all inertial frames.

In this section we shall use the Greek suffixes for index values
ranging from 1 to 4 and Latin index values from 1 to 3. g
Let there be two inertial frames in which the coordinates are denoted 9
as xa, x*. The first three coordinates are the rectangular Cartesian

and the fourth is the time. Thus, for example

+The inspiration for the work of this section is due to a paper by
G. C. Mcvittie [ 30].




Let the second inertial frame move along x! with a constant velocity

V with respect to the first. A general coordinate transformation between

a — . .
x and x can be written as four equations

= 0P x,x2,x3,x%) (276)

If now the two postulates, and specifically of the isotropic propagation
and constancy of light, are used then as shown by Tolman [31] the only

possible transformation forms for ¢B in (276) are

x! = k(x! - vx*) (277a)
x2 = x? (277b)
x3 = x3 (277¢)

— 1

x4 = kGt - O (2774)

where
Ve -1/2
k= (1~ 229 /

The mapping (277) is called the Lorentz transformation. It is immediately

seen from (277), that when V is very small in comparison to ¢, then k + 1

and

xl = x! - yx* (278a)
x2 = x? (278b)
x3 = x3 (278¢)

- ANy

(2 e = e
B e

TP




Xt = x" (2784d)

which 1s called a Newtonian or Galilean transformation.

As a check on the form-invariancy of a physical law, we can take
Newton's second law of motion for a body of constant mass m, and acted
upon by a force system Fl,

i d

i

dx

F©' = —/(m, —%) i=1,2,3 (279)
dxh 0 dx“ ’ ’

It can be easily verified that under the transformation (278) the law

takes the form

ey ——
A2 N AP SIS N R

KA

o d dx’ i=1,2,3 280
‘j(mo _“),l— ’e> ( )
dx dx

b 7

so that the form is preserved under a Galilean transformation. If we

i e

repeat the same procedure using the Lorentz transformation then we find

i

that (279) cannot be transformed to the form (280).

We now consider the invariant nature of the element of length for

it

an Euclidean four-dimensional space. Recall from eq. (71) that the i

element of length in E* will be i

2 - Q g
(ds) Gade dx L

This metric does not remain invariant either for the transformation (277)

or (278). Thus the Euclidean metric is completely unsuitable for de-

scribing a physical phenomena in an event space. For the Lorentz trans-

formation, it can be shown that the metric




(ds)2 = (cdx*)2 - (dx!)2 - (dx2)2 - (dx3)2 (281)

transforms to

(ds)? = (cdx*)? - (dx!)2 - (dx2)2 - (dx3)? (282)
so that the metric (281) is form-invariant under Lorentz transformation.
We can write (281) in the form of eq. (74),

(ds)? = gaedxadxB

so that

-1 -1 -1

» By » 833 v 84y T

Byg = 0 if a#8

Thus, for this metric

g = —c

and consequently in all the tensor formulae g must be replaced by -g.

To complete the consequences of (281), we first write it in the

form

2 = (48,2
(do)2 = (42
= dx")? - H[@x)2 + (dx2)2 + (dx3)?] (284)
C

It must be realized that the element ds in (281) is not the distance

between two closely spaced points. Thus do is an interval which tends to




an interval of time only when ¢ is considered to be infinite rather than
finite as stated in the second postulate of mechanics.

Now writing

dx! 2 dx? 2 dx3 2 2
=) + )+ ()l =
(dx ) (dx ) (dx ) (u)

in (284) to have

_ u? ~1/2
- a-Y (285)

Note that in the Newtonian mechanics ¢ + « and dx" = do, and this is all

we get out of the metric (284).

A four dimensional Minkowski momentum vector is now defined by the

components

Wy 4 % T 1,2,3,4 (286)

where m, is the mass of the body when at rest, viz. u = 0. The fourth

component of (286) is defined as the mass m of the body in motion. That

is

which on using (285) gives the well known relativistic mass

2 _
m = my(1 - ) L2 (287)
C
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The other three components are

Lodx o dxt
0 do 0 dxn do
dxi
=m— , 1= 1,2,3 (288)
dx

which are the Newtonian momentum components.

The four-dimensional Minkowski force vector has components Fa,

7 a2x®
0 do¢?
-4
do" 0 do
- UG d g e (289)
c? dx* 0 do
Thus
Fi = (1 - Ei -1/2 —g—{m QEE) (290)
and

2 _1/2
F’-ﬁ:(l_u—z) /ﬂ

c dx"
1 u?,~1/2 dE
- la - w2 (291)
C2 CZ dx”
where from (287)
87
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2 2 1
= + =
m.C 2m

2 LN
0 + (292)

E = mc Ou

This short discussion on the fundamentals of the special theory
establishes the connection between the relativistic and non-relativistic 4
mechanics and more importantly brings out the structure of the metric
needed to describe a space-time continuum.

In the case of general relativity, Einstein proposed the principle

of covariance which states that the physical laws under a general trans-

formation of coordinates are form-invariant. This principle thus

sweeps away the privileged position of inertial frames as embodied in
the two principles of mechanics. For the description of general rela-

tivity theory, the Riemannian metric, eq. (74), is used in its most

general form with the metric coefficients gij as related to the distribu-

tion of matter. For details refer to [7 ], [31], etc. : "3

§9.1. Newtonian Mechanics Using the Principles of Special Relativity.

O

Newtonian mechanics with reference to an inertial frame of reference

PR APy

is described by the three spatial Cartesian coordinates x! = x, x2 = Y,

x3 = z at each absolute instant of time x* = t. Thus time is not affected
by the motion and remains the same for all coordinate systems. In

essence time is not a coordinate any more but is a parameter which de- L

scribes the transformation of a three-dimensional Euclidean space into

itself with the passage of time. The geometry of this event-space is

then simply defined by an Euclidean E3 metric in either the Cartesian

or any general three-dimensional coordinate system with t or x“ as a

parameter.
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! If we attempt to describe the motion of a mass point as a collection

2,x3,x") in a four-dimensional manifold then we !

of four numbers (x!,x
have to use the metric of the special relativity given in (284), with
the option of performing a general coordinate transformation from the
Cartesian to curvilinear while keeping x" the same, as described by
Mcvittie [30].

Let us introduce a transformation of spatial coordinates to a

. a
curvilinear system §{ as

I x5 = oYY, r=1,2,3; a = 1,2,3,4
(293)
x* = gt
Thus
Y [s )
dx* éﬁ; ds (294a)
3¢
dx"* = dg (294b)
Writing (284) in the form
do)? = @x? - 5 6 axla (295)
c ij
and using (294), we obtain
(do)? = g_jdc*ag? (296)




and

y -6 axi ij
4 T4
44 13 56" e

v, =y, = 3xi axj
p4 4p 13 4¢P ag“
1,3

) )
Yy =y =5, 2

Pa P 1] 4P 4.4

(297b)

It must be recalled that the Greek indices range from 1 to 4, while the

Latin indices range from 1 to 3.

metric (296) has symmetric coefficients, viz.,

Let

and

A

then

and

ol

gaB = Bgy -

g = det(gas) > AO = det(YQB)

- - 2 2 >
Y11Y22Y33 * 2Y12Y13Y23 T Y11Y23 T Y22¥i3 T Y33Yi2

o>

o
]
0,|
D>
+
P
@|O
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Obviously, as defined in (297b), the

(298)

(299a)

PG e

'~

ISP T

ar s > ey




A
g/ 0 (299b)

. PRI AN ey & ~es

In Newtonian mechanics we deal with velocities which are much

smaller than c¢. Thus xr(ga) should be such that Yuv do not contain a g
i

factor of c?. Hence 8,4 is of the order of one, while the remaining
g are of the order of -L-.
HV cl
Let v be a four component velocity vector, then according to the

special theory of relativity its c¢ -rravariant components are

2 2172 g%
o < dx _ (1 - (u) /4 dx
do c? dxt

For u <« c¢, neglecting terms of order-J? , we get
c

u® =%§—; (300)
Thus, for Newtonian mechanics
i dxi
u“=1,u=;—;,1=1,2,3. (301)
X

In the transformed coordinates defined by

xi - xi(ga)
have the components as
i agt
vt a1l , v = —S: (302)
dg
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The divergence of v in special relativity is, (eq. (201)),

B (303)
g(’.

div v =

i

Using (299b) and neglecting terms of order ;%-, we get
c

L 25V (304)
VB 3

div v =

with v% = 1.

From eq. (211la) the divergence of a contravariant tensor in special

relativity (four space) will be

™ = L (/g gy 4 pH OV (305)
sV /:g- ag\) av

Again using (299b) and neglecting terms of order~13 , we get
c

™ =L 2 a4 ¥ 1% (306)

§9.1.1. Application to the Navier-Stokes Equations.
As an application of the preceding approximations of the special

relativity to the Newtonian mechanics, we consider the transformation

T . . .
of the complete Navier-Stokes system of equations to time dependent

+

coordinates'.

The Navier-Stokes system of equations for a viscous compressible

fluid in the invariant vector form is

+McVittie {30] has considered only the inviscid equations.

+A derivation without using the special relativity has been obtained by
the present author, [32].




v m— Y

et R G g a3

g£-+ div(pv) = 0 (307)
t - 1
4
] .~ ;
Sz(py) +divt =0 (308) [
where p is the density, T is the stress tensor, and the div operator is g

the spatial three-dimensional divergence.

We now define a four-dimensional energy-momentum tensor 1
TOlB = pvav8 + Tas (309)
such that
vt =1
T“i“_p
(310)
e LR S pvl g
TiJ - TJl

where i and j vary from 1 to 3. Using (304) and (306) we can write both

ST L

(307) and (308) as a single equation

T“Z =0 (311)

As before, a comma in (311) denotes covariant differentiation; a =1, 2, 3
correspond to the three equations of motion (308) and a = 4 corresponds to

the equation of continuitv (307).

Earlier, in §8.4.1 the subject of divergence-free tensors was discussed




and an equation exactly similar to (311) was obtained for curved geo-
metries, eq. (273). These similarities tell us a lot about the connec-

tion of geometry with mechanics and the physical laws.
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Part II

The Geometry of Curves and Surfaces

§1. Theory of Curves

In this section we shall consider only those parts of the theory &£
of curves in space which are needed in the theory of surface. All our
considerations will be confined to an Euclidean E3 in which the space

curves in parametric form are defined by

r = r(t) (1

where t is a parameter which takes values in a certain interval a < t < b.

N

///// 4
Figure 4. E

It is assumed that the real vector function r(t) is p > 1 times
continuously differentiable for every value of t in the specified interval,

and at least one component of the first derivative

o}

]
l o
Kol

¢
(<}
(ad

(2)

is different from zero. Note that the parameter t can be expressed in

terms of any other parameter, say 1, provided that %% # 0.




(i) Tangent vector:

Choose s, the arc length along the curve as a parameter. Let

r(s) and r(s+h) be nearby points on the curve. Then the limit

r(s + h) - x(s)

- == (3)

is the unit tangent vector at the point s on the curve. Note that

l§l=l—§§;—'=l-

If s is replaced by another parameter t, then
t =———=1"/ir"| (4)

A straight line in the direction of t from the point s on the curve is
the tangent line to the curve.

(ii) Principal normal:

Since
tet=1
hence by differentiation
dt
t «-—=20
~ ds
dt
so that the vector E; is orthogonal to t and is called the curvature

vector. We shall denote it as k,

96




k=35 (5)
The unit principal normal vector is then defined as
p = k/|k| (6)
The magnitude
k(s) = |k| , o(s) = 1/k ()

is the curvature of the curve and p is the radius of curvature. The
principal normal is directed toward the center of curvature of the curve
at that point.
(iii) Normal plane:

The totality of all vectors which are bound at a point of the curve
and which are orthogonal to the unit tangent vector at that point lie in
a plane. This plane is called the normal plane.

(iv) Osculating plane:

Choose any three nearby points on a space curve through which a
plane can pass. Let the equation of this plane be written in the current

variable r as
r-asc ®

where a is perpendicular to the plane. We now define a function f(u) of

the parameter u,
f(u) =r - a-c 9

fLet X, be the point on the curve where the parameter has the value

u.. The three points chosen on the curve are denoted as ugs Uy u such
i

3
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that they satisfy eq. (9), i.e.,

f(ul) =0, f(uz) =0, f(u3) =0 (10)

Hence according to the Rolle's theorem

L}

f'(gl) 0 b ul < El < uz

1y

f'(gz) 0;’-12(52(“3

Because of eqs. (11) we can again apply Rolle's theorem to the function

f'(u) in the interval 51 <u s &2, so that
f"(€3) =0, £1 <83 <& (12)

As the two points u, and u, approach in the limit to u;, we have

3
u2’“3’€l’€2’£3 -+ ul

and equations (10), (11) and (12) yield

f(ul) =0, f'(ul) =0, f"(ul) =0 (13a)

(13b)

Combining equations (8) and (13b), we get the equation of a plane at x

l,

=x + At + up (14)

where A and p are scalar parameters. This plane is called the osculating

e




plane, and as shown by (14) it is spanned by the unit tangent and the
unit principal normal vectors.

(v) Binormal vector:

A unit vector ?(s) which is orthogonal to both t and p is called
the binormal vector. Its orientation is fixed by taking t, p, b to form

a right-handed triad as shown in Fig. 5.

t
Figure 5.
Thus
13=Exp (15)

Note that for plane curves the binormal b is the constant unit vector
normal to the plane, and the principal normal is the usual normal to the
curve directed toward the center of curvature at that point.

The twisted curves in space have their binormals as functions of s.
Because of twisting a new quantity called torsion appears, which is
obtained as follows.

Consider the obvious equations
beb=1,b-t=0 (16)

Differentiating each equation with respect to s, we obtain




E) . —s— = 0 (178) ]
|
dt db
Thus r1
db
d—;— . E = ..k? . E 1
=0 (17¢)

db
From (17a,c) we find that 5; is a vector which is orthogonal to both t

db
and b. Thus 5; lies along the principal normal,

.
T

Y
®
[}
+
~A
[lge]

db
To decide about the sign we take the cross product of b with —= and take

ds
it as a positive rotation about t.
VAN t
db
ds
b
~
Figure 6.
[
Thus :
db
bxag =Tt (18a) !
g and ¥
db 8
d—g = —TB (l b)

ety Tape
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§1.1. Serret-Frenet Equations.
A set of equations known as the Serret-Frenet equations, which are
the intrinsic equations of a curve, are the following. Differentiating

the equation

with respect to s, we have

(=%
o

ds = TP - ks (19)

Equations (6), (18b) and (19) are the Serret-Frenet equations, and are

collected below

I K
ds = ? ; = curvature
ar i 20
is = ‘T? ; T = torsion (20)
dp
TRk

For a plane curve, 1 = 0, so that

p = constant

ds kp (21)




§2. Geometry of Two-Dimensional Surfaces Embedded in E3.

In the theory of surfaces, embedded in E3, we shall use ul, uz,
or u® as the coordinates in the surface and xi (1 =1,2,3) as any
general coordinatc system in E3. An element of directed segment dr

is then represented as

= %% 4.1 _ i
dr = 1 dx gidx (22a)

ar
dr = —— du® = r a® (22b)
~ ~ O ~Q

since in principle
r=rxl) = r(x(ul,u2)

for points belonging to the surface. Also since

x' = xi(ul,uz) (23)
hence
. i
dx* = 9% du® = xidua (24)
au“ @

x' == (25)

Now the metric formed from (22) is
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(ds)? = gijdxidxj (26)
L
so that on using (24), we get g
11 o, B ‘
2 4
(ds) gijxaxedu du ?
_ a, B g
aaedu du (27) ]
, :
The three quantities
i
N f
%ap = Bij%ap (28) :
1
. %
form the components of a symmetric tensor, called the fundamental metric
tensor of aVSurface. In the old literature, the following non-tensorial
notation is also used. !
31" Esa,=a8,) =F,a,=6. :
Since in an Euclidean space we can always choose a rectangular h
4
Cartesian system, so that
"&
s ¥
8ij T °1j 3
4
and then H
1 j '
=6 J
ag ijxaxﬁ (29)
|
From here onward we shall return to the symbolism of Part I and use
the notion gij for aij as there is no chance for confusion if the meaning
}
r
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1s clear from the context. Thus, we shall take the metric of a surface

with coefficients g rather than a _, as
aB af

8

(ds)? = g, dx*dx (30)

B

Sometimes when there is no use for an index notation we have used the

_symbols
x* =u or § , u2 =v or n

Therefore

2 2 2
(ds) gll(du) + 2g12dudv + g22(dv) (31)

The metric (30) for an element of length in the surface is called
the "first fundamental form" for a surface. Some expansions for future
reference are listed below. A variable subscript in the formulae given

below stands for a partial derivative.
= x2 + y2 + 22 =
u u ~

811 T *u

= +
ng Wy + yuyv zuzv

(32c)

_ ki

*To distinguish the "g'" of the general coordinates (cf. Part I) from the
"g" formed by the coefficients of the first fundamental form of a surface,

we denote the latter by g(v), where v stands for a coordinate held fixed
on the surface.
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8 8’ = 0 (34a)

gll = 822/8(\)) s 812 = 821 = ‘glz/g(v) ’ 322 = gll/g(\)) (34b)

where v is a parameter which remains fixed on a surface.
9r or

Let 6 be the angle between I, = si-and Iy =3 ° Then
cos & = (x) - £))/V8 18y, = 81,/"818y (35)
and
2y % 5% = gyy8ppsin’e
= g11g22(l - cos?8)
= B(y) (36)

From (35) we see that the surface coordinates are orthogonal if

812

The base vectors in the surface defined in (22b), viz.,

e again emphasize the notation that a subscripted r such as r, or r
stands for differentiation with respect to ul! or u?. Only when expres-
sions have been opened in full, the notation ul = u, u? = v has been

used.
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define the unit normal vector n at each point of the surface through

the equation

r, xr

~1 ~2 1 ,a: or
n = = = X = (37
n T%l X le g———Aau v )

(v)

The Cartesian components of n will be denoted by X, Y, and Z, so that

from eq. (37)

X = Jl/'/g(v) » ¥ = lev’g(v) , 2 = J3/Vg(v) (38)

where

J, =x2 -x 2 (39)

§2.1. Normal Curvature of a Surface: Second Fundamental Form.

A plane containing t and n at a point P of the surface cuts the
surface in different curves when rotated about n as an axis. Each curve
is known as a normal section of the surface at the point P. Since these
curves belong both to the surface and also to the embedding space, a
study of the curvature properties of these as space curves also reveals
the curvature properties of the surfaces in which they lie.

We decompose the curvature vector @ at P of C, defined in eq. (5),

into a vector kn normal to the surface and a vector gg tangential to the

surface as shown In Fig. 7.
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Figure 7.

Thus

TR

= gn + 15g 40)

The vector gn is called the normal curvature vector at the point P. It

is directed either toward or against the direction of n, so that

k =nk (41)

where kn is the normal curvature of the normal section of the surface,
and is an algebraic number.

To find the expression for kn, we consider the equation

and differentiate it with respect to s

sttt @k +k)=0

or,

A Tl 42)

f 4




—r =

Also, differentiating the equation

ner =20
~ ~8
. Qa
with u~ to have
D, "Igtm - re=0
or,
o, EB = -n-° 5&8
Further,
dn = n du
~ ~a
g
dr = r d
r ‘g u

Using (43b) and (44) in (42), we get

B
_ du®du
kp = (@ - rog (ds)?

)

We now introduce the quantities ba as

B

(g gy
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(43b)

(44)

(45)

(46a)

(46b)

(46¢)
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Thus (45) becomes

b, gdu’du® |
kK =25 (47a) ]
n (ds)? ‘
a B 4
_ Paglv v (47b) '

H, V

guvdu du

The form
baBduaduB (48)

is called the "second fundamental form" of the surface theory. The

expanded forms of baB are

b = Xx + Yy + Zz

11 uu uu uu
Pip = Ky Wy Y22, = by (49) 4
b22 = Xxvv + viv + szv !:

Similar to g(v), we also define

i b=b,b,. - (b

; 11°%22 )? (50)

12

It is shown in standard texts on differential geometry, e.g., [ 6], [13],

[17], etc., that points on a surface can be classified as follows.

b>0 , elliptic point
b =0 , parabolic point (51)

i b < 0 , hyperbolic point

Y e gy s

109




We now return to a consideration of kn. First notice that

nek=n Gkt k)
=k (52)

Since p is the unit principal normal to the curve, hence

k = kp (53)

Using (53) in (52) and denoting i ¥

n - p=cosy (54) ! 2
4
¥
| . }
i we obtain T4
I‘ ;’
kn = k cos y (55)
Therefore if y = 0, then k = kn; if v = %5 then kn = 0 and the curve is
a plane curve; if y = w, then k = -kn. Let
1 1 ‘
k:—- , kn=—
p Dn
then
p =p cosy (56)

Equation (56) gives a theorem, called Meusnier's theorem: The center
of curvature 0 of all curves on § at P having the same tangent t lie on

a circle of radius %]pn|, Fig. 8.




.

;

Figure 8.

§2.2. Principal Normal Curvatures.

From (47b), writing

we have

2
by, + 2b, +a%b,
““ "% + 2xg,, + A2 (7)
811 12 892

The coefficients gaB and ba are constants at P, so that kn is determined

B

by the direction A. Thus all curves through P having the same tangent
and the same sense of n have the same normal curvature kn.

To find the extreme values of kn’ we differentiate kn with respect

to A and set 1t equal to zero. Thus

- =0 (58)

The roots of the above equation determine those directions for which

the normal curvature kn assumes extreme values. These directions are
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called the principal directions and the corresponding values of kn are

called the principal normal curvatures at P of the surface. To find

these values, we first write (57) as

where

11 12
B = by, + Aby,
C=138; *+ 28,

On using (58), we get

Elimination of X between the two equations

B-Dk =0
n
A-Ck =0
n
gives
k2 - =2 (g b - 2g b, +g,.b )k +—2— =0 (59a)
n g(v) 11722 12712 22711 ™n g(v)
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or

Bk +

noE(y)

k2 - basgu =0 (59b)

The roots of the above equation denoted as k, and k2 are the principal

1

normal curvatures. Obviously

_ . aB
ky +ky =D g (60)
b
k.k, = (61)
2
12 gy

Some definitions based on the above derivations are given below.
(i) Asymptotic directions:

Points on a surface where kn = 0 give two directions through the

equation
2 =
b22A + 2b12A + bll 0
or
- + v 7
dv _ Pp1p * V(byp)* - b ybyy
du b (62)
22

These directions are called the asymptotic directions. If a straight
line can be drawn on a surface then it is obviously an asymptotic curve.
(ii) Lines of curvature:

The line of curvature is a curve whose direction is a principal
direction at any of its points. That is, at every point of a line of
curvature the normal curvature is either k, or k2' Thus the lines of

1

curvature are the solutions of the equation (58), viz.,

P SRR SO P v g ] N>

.
.

.

Y




]
}

dvy2 dv
(81255 = 82201 2) ()™ + (81,055 = 83509904,

+ (8ybyy ~ ByPyy) = 0 (63)

Note that the equation (63) is equivaleﬁt to two equations of
the first degree. Thus eq. (63) defines two families of curves on a
surface. Moreover, the two curves are also orthogonal. (Refer to
eqs. (123) for proof.)
(iii) Coordinate curves as lines of curvature:

If the curves u and v on a surface are lines of curvature, then
from (63) we have for

u = const.

Byabyy 7 8ypP1p =0

and for
v = const.

811P12 ~ B1oPyp = O
Thus in these coordinates
81 = 0o, b12 =0 (64)

Because of (64), (57) becomes

du, >
k = S) + b, . (

_ dv
n b1l(d 22

ds

)2

so that
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b11
for v = const. , (u-curve) : k, = —=
Loey

(65)
~ _ by
for u = const. , (v-curve) : k, = —
2 8y

(iv) Gaussian and mean curvatures:

The product of the principal normal curvatures as defined by (61)

is the Gaussian curvature K.
K= klkz = b/g(v) (66)

Similarly the mean curvature Km is defined by (60) as

=1
K, = 30k + ky) (67)

Surfaces for which Km = 0 are called minimal surfaces.

The structure of the formula for the Gaussian curvature K given in
(66) shows that it is an extrinsic property. 1In fact K is an intrinsic
property of the surface, viz., it depends only on the coefficients gaB
of the first fundamental form and their derivatives. Refer to eq. (91)
for this aspect of K.

Note that if K > O then both the principal normal curvatures have

the same signs, while if K < O then they differ in sign. For example

K > 0 for ellipsoids, elliptic paraboloids and spheres, etc., while K < 0

for hyperbolic paraboloids, hyperboleids, etc.

§2.3. Equations for the Derivatives of Surface Normal (Weingarten
Equations).
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Since

hence

[R=]

1

To find P, *°-+, S,

we get

Thus from (46b)

which shows that n lies in the tangent plane. Consequently n

must be linear in r. and ¢

-El =0’a=l’2 (68)

1 and n,
9°
n = Pr, + Qr, (69a)
n, = Rgl + ng (69b)
we first note that
r;,=0,n-1,=0 (70)

Differentiating the first equation in (70) by u? and the second by ul,

n, *r,=mn, °r (71)




4 . ———" S —_—

% Using (72) in eqs. (69), we get

Pgyy T Q85 = by

Pgyy *+ Q8yy = ~by, .
(73)
Rgyp * 5815 = ~bypy
Rgyy + 88y, = =By, q
Solving eqs. (73) we get P, Q, R, S, and hence ¥
1
B = g 2, (P1gBry = by 8yp)Ty + o (by 8y, ~ byggy )L, (74a)
) v)
Ny = g 7 (bgpByy = b8y + (b12g12 b52811%2 (74b)
v) B(v)
In suffix notation, eqs. (74) are written as
b gt r (74c)

By = TPugB ~y
Equations (74a,b) or (74c) are known as the Weingarten equations.

§2.4., Formulae of Gauss and the Surface Christoffel Symbols.

1 \ The vectors r,,

three~-dimensional space. It should therefore be possible to express the

r, and n form a system of independent vectors in a

vector rOlB in terms of these vectors. Thus we assume

- 7Y
Lo TGBEY + Bygd (75)
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hence from (46a) we find that

Since n is orthogonal to b 1 and Iys

BaB = baB .

Next taking the dot product of (75) with r, we get

M = .
TaBgyd fag " Ls (76)

We now write

L5 * Ts = [48,6] (77)

where as before (refer to eq. (129) of Part I), the quantities [aB,§]
are called the Christoffel symbols of the first kind. If we now take
the inner multiplication of both sides of eq. (76) with god’ we get

™7, - $9148,6] (78)

, o
The quantities TaB defined in (78) are the Christoffel symbols of the
second kind. (Refer to eq. (133) of Part I.)
The equations

n (79)

= 7Y
=T r + ba8~

Tag aB~y

are called the formulae of Gauss for the second derivatives EGB'

The Christoffel symbols defined in (77) and (78) have got exactly

the same structure as in the general case discussed in Part I, §4.

Note: The symbol T is the capital upsilon of the Greek alphabets,
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However, because of the two-dimensional manifold under consideration,

the Greek indices range only from 1 to 2. We shall keep the notation
T in place of T for the Christoffel symbols of the second kind so as

not to cause confusion in their use to be discussed in Part III.

§2.4.1. Christoffel Symbols.
For future references, we now list the expanded forms of the

Christoffel symbols for a surface.

l(agsd N 98,5  284p

[aB,8] = - ) (80)
275 suf au®
° = ¢%%aB, 5] (81)
aB ?
Writing ul = u, u? = v, we have
og o8 g
. 11 11 12
T = (8 g * 81205y — 2 5, 01 28, (82a)
og g og
2 . 22 22 12
T3 = (810 3 T 812(He ~ 2 5y 01/ 28, (82b)
g g g
1. 12 222, 22
T22 = 1822 5y~ = 5y ) = 812 oy 1/28(y) (82c)
3g ag 38
2 - 1z ~11, 11
T = (81,2 54 5v ) T 812 T3 1/28(y) (82d)
g g
1 - ol = 11 22
Ti2 = o1 = B2 v ~ 812 T3g /%8¢y (82e)
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g og
22 11 (82£)

2 _ 2 = —2z _ "1l
T2 = T21 = (811 5 ~ 812 Tov 2/28(y)

ag
R S A°) R | 2
78 3u - Tt T (82g)
(v)
g
P S 6% R 2
%, o Ty + 75 (82h)

Note that the gaB in eqs. (82) are those which have been defined in (32)

and (33).
From eq. (134) of Part I, we have the result
r,, = I‘2 r (83)
~ij i35
where
or
r, =——=a
~2 axl ~L
32y da
r = "_=—j.'-

It is worthwhile to compare (79) and (83) in the same coordinates in the

sense that at the surface both should coincide. This idea will be

explored fully in Part III.

Intrinsic Nature of the Gaussian Curvature (Equations of Codazzi

§2.5.
and Mainardi).

The position vector r in an Euclidean space can always be represented

Thus it is clear that

in terms of the constant unit vecotrs.




2 o8
—__(Eaﬁ) - B(an

BuY Ju ) ¢4

for any choice of a, B and y. We now use eq. (84) to obtain some
important results of the surface theory.
On differentiating eq. (79) and using (74c), while properly taking
care of the dummy indices, eq. (84) yields
E)T6 BTG

af ay g .6 A 6
—_— - + T T -7 7T
[ auY auB aB Yo ay BA}

agé
8 (baBbyo - babeo)]Ed
BbaB ob 5 A
+ % -1 b Jn=0 (85)
BuY BuB aB s ay BATS

Since I, (6 = 1,2) and n are independent vectors, hence the coefficients
of s and n must vanish separately.
The term in curly brackets in (85) is the two-dimensional version
of the Riemann-Christoffel tensor defined in Part I, eq. (240). For
the sake of clarity, we use R* in place of R for the two-dimensional case.

Thus (85) yields the equations

*
1) oé(b b - b

*ayB -8 af yo aYbBo) =0 (86)

ab




A two-dimensional Riemann curvature tensor (similar to eq. (244), Part

I) is now introduced as

R* =g RO (88)
pay8  Bus eayB
Thus (86) becomes
R =b .b b b (89)
payB  aB ym  ay Bu

As discussed in Part I, §8.1, the covariant Riemann tensor has in
all 16 components in a two-dimensional space out of which, apart from

sign, only four are non-zero. Thus the four components are

* * * *
Ry212 » Boion » Roiz v Rooon

where

Rio12 = Roams

and

Ro112 = Ryoon

Therefore from (89)

* *

Rig12 ® Rppp1 =0 (90a) §
* =R 90b)
Ryp12 " Rygop = 7P (

PRI AR RPN
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Using eq. (66), we get from (90a)

*
K =Rip15/8(y) (91)

Equation (91) shows that the Gaussian curvature is an intrinsic

* -
property of the surface, since R

1212 is formed purely of the coef-
ficients 8ag and their derivatives. This is the "Theorema egregium"

of Gauss.

Equations (87) are known as the Codazzi-Mainardi equations. The

only two possible equations from (87) are

3, b, 1 )
o 12 1 _ g2 -
3V 0~ P1Tig F Ty = Tidbyy + Tpbyy = 0 (92a)
3b 3b
22 12 1 2 _ ¢l - 12 =
u vt P1Top ¥ (Thy = Typibyy = Tigbyy = 0 (92b)

§2.5.1. A Particular Form of Codazzi Equations.

Consider the case when u and v are the lines of curvature, so that

810 = 6, b12 =0 . (93)
From (82):
oo L Buo, 1 %u
]
12 Zgll v 11 2g22 v
(94)

oo 1 B 1 By

12 ?gzz 3u 22 Zgll du -

123




o g

The set of eqs. (92) take the form (by the use of eq. (65)),

b g
11 _1 11
v -2 Tk (95a)
ab og
22 1 22
du 2(kl + k2) du (95b)

, 3 3 .
Opening the derivatives av(klgll) and au(k2g22) and using (95), we get
ok 3g
1 1 B 11
ov  2g (k2 kl) v (96a)
11
ok dg
2 _ 1 22
du 2g22(kl kZ) Ju (96b)

§2.5.2. The Third Fundamental Form.

Let all the unit normal vectors n to a surface have been translated
parallel to themselves such that their initial points are tied at the
origin of coordinates. The terminal points will then lie on the surface
of a unit sphere, for ordinary surfaces. The first fundamental form for

this sphere will then be

c duaduB
aB
where

1
4 E

CaB - Qa l:IB 57) L
As before, denoting the components of n with respect to the Cartesian gl
¥
coordinates as X, Y, Z, we have the expansions &i
|
1




= y2 2 4 72
Cll Xu + Yu Zu

€12 7 XuXv +Yqu + Zuzv (98)

Chp = X2 4+ Y2 + 22
v v A\

22

Using the Weingarten equations (74) or (74c), we can also write (98) as

c1p = (Bypbyy = 281501505 + gy bTo) 8,

= - o 2
1o T [8y9by b1y = Bya(byybyy +b7)) + 8y 1byobys 1 8 (99)
- 2, 2
g = (Bypby = 28150 500y + 8910550 /8
Also

C = iChy - (clz)2 = bz/g(v) (100)

§2.6. The Geodesic Curvature.

In §2, eq. (40) we wrote the curvature vector é as the sum of the
normal curvature kn and a tangential curvature kg' The vector Bg is
called the geodesic curvature vector, and its magnitude as the geodesic
curvature kg'

Since the vector gg lies in the tangent plane to a surface, we

define a unit vector e as
e=nxt (Fig. 7) (101)

and write
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Now

Further

and

Using (79) in (104b) and putting in (103), we get after some simplifica-

tions

Thus, on the curves u

(k)

u

.
]

~
[}~
X
ore

~

.

dua duB

d2y®

EaB ds ds

const., and v =

const,

r
~Q dST

const.,, we have

1
)

= Vo (72 (duy3 _ 1 (dvy3 2 _ ol
8y M1Gs)° ~ T226ge)° + @13, - 11))¢
- @1l - 12 y@Y2 du  du d?v _ dv d%u
Ty = 192G " a5 * ds 42 ~ s g2

3/2
27827

(102)

(103)

(104a)

(104b)

(105)

(106a)




RPN

3/2

k =V T2 6

( g)v = const. 5w ll/gll (1o6b)
If the coordinates are orthogonal, then
_ 1 3

(k) = -—~—-5—(vag22) (107a)
8 u = const. Vg u

11

(k) S G/} (107b)

By = const. ngz v

A curve C on a surface S is called a geodesic curve or simply
geodesic if its geodesic curvature vanishes. Therefore for u = const.

to be a geodesic

1=
3, = 0 (108a)

similarly for v = const. to be a geodesic

2 =
Tll 0 (108b)

§2.6.1. Geodesics and Parallelism on a Surface.

Having defined the geodesics as curves on a surface whose geodesic
curvature at each point is zero, we must now find the differential
equations of the geodesics.

A vector in the tangent plane of a surface is known as a surface
vector, or a vector in the surface. If u! and u? are the surface coor-
dinates, then according to eq. (22b) the vectors r are the surface base

vectors, and they are related with the space base vectors a, as
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Let A be a surface vecto

>

Since A can also be regarded

r field. Then

fi
[a]
=

as a vector field in E3, hence

A= QiAi
Thus
Ai = 8%
Let us consider a curve on the surface whose parametric equations
are
= W% (t)
Then
A= AQ(E))
Consequently
dA _ 4p® o duP
dat ~ dt ‘a + B fag dt
Using (79), we get
:—% = (B, + BabaBg]%ﬁi (109a)
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where Ba is the covariant derivative7 of Ba defined as

»B
a
B°‘B = 3LB + BYT“B (109b)
’ du Y
The quantity
B
68 _ _a du
s¢ - 8,8 dr (109¢)
is called the intrinsic derivative of A on the curve u® = ua(t).
It is interesting to note that
dA 8%
4 dt Ba 1
where Ba are the covariant surface components of A. Consequently
dia12y = S(p %
Te(1Al®) = 5o (B BY) (109d)

In place of an arbitrary vector A, let us consider the tangent vector

field t(s) on a surface curve = ua(s). Then

o
_ du
t ~a ds
and
dt B
.i.

The definition of the covariant derivative in a surface is the same as in
any other space. Refer to Part I, §4. The only care one should take is to
replace T by T for the Christoffel symbols.




Since on a geodesic curve gg = 0, hence from (110) we find that for

the geodesics

v} duB

.8 ds =0 (111)

Thus the geodesics in a surface are the solution curves of the equations

d2u® a duB du” -
P +TBY—'&—S—dS-O,(1—l,2. (112)

The definition of a parallel field of vectors in a space of any
dimension was given in Part I, §7, eq. (220b). The same definition is
applicable in the surface, viz., for a parallel field of vectors A, the

intrinsic derivative is zero.

a B
dB_ , gY@ du

dt gy dt = 0 (113)

Equation (113) 1is also called the condition of parallel displacement in

the sense of Levi-Civita. This means that in the covariant differentia-

tion the Christoffel symbols TZY are used. It must be noted that a

covariant differentiation can also be defined in which another three

o

By’ is introduced, Weyl [33].

index symbol, say G

§2.7. Differential Parameters of Beltrami.

E. Beltrami in 1864 introduced four differential parameters which

-




greatly simplify the representation of some formulae in the surface
theory. If ¢ is a function of the surface coordinates u and v, then the
differential parameters of the first and second orders are as follows.

(i) First order:
= 2 _ 2

80(8,0) = [0 ¥, — 8,00 ¥ + 00D + 8,509,178, (114b)

(1ii) Second order:

8y0P, ~ Byy0 8119, ~ 819¢
JL( 22%u 12%v 9 1l 12 Yy1/ve <

B¢ = [ ) + ( 8 (114c)
2 du S v v)
) E)
= - Tl - 72 - 7l ~ 72
A22¢ [(¢uu Tll¢u Tll¢v)(¢vv T22¢u T22¢v)
- ~ 7l - 712 2
(b = Tioby = T300%1/8 (114d)
The parameter A1¢ is the surface gradient of ¢, viz., R
3¢ 3¢
Al¢=ga8 % B ;
du  du |
t
.
The parameter Al(¢,w) is related with the angle 6 between two curves ¢ = L
const., ¥ = const., as |
j
= -
8, (6,9) = ~/T&$)(B)¥) cos 0 (115)

Thus the curves ¢ = const., and y = const., are orthogonal if




o s

8,(4,9) = 0 (116)

The condition equation (116) can be linked with a second degree
equation in dv/du whose solution curves are orthogonal. We recover this
theorem in a way different from that in Ref. [6 ], p. 80, as follows.

For ¢ = const., and y = const., we have the auxiliary equations

¢udu + ¢vdv =
wudu + ¢vdv =0
Thus
. ;;f-= %{% (117)
so that
¢u¢v - ¢ku =0 (118)
Using (118) in'(116), we have
gll¢vwv - 2812¢ku + g22¢uwu =0 (119)
We now introduce the symbols
o0, = T, 09, =S, 0% =R (120)
so that the condition of orthogonality is
gllT - 23128 + gzzR =0 (121)
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Using (117) in (120), we also have

du, 7

u

o]
]

du

u'u dv az2)

From (122), we find that
R(du)? + 2S dudv + T(dv)?

is identically zero. We therefore state the main result as follows.

"The ordinary differential equation
R(du)? + 28 dudv + T(dv)2 = 0 (123a)
for arbitrary R, S and T yields orthogonal solution curves if and only if

gllT - 2g128 + gZZR =0 " (123b)

The second order differential parameter given in (1l4c) also allows

us to define a second order differential operator,

1 3 1 9 9
A, = [ { (8gg 7 = 8, 7}
2 —"3u 22 3u 12 3v
) "B(v)
3 1 3 )
MR SR T (124)
(v)
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Thus

Av = {
/g(v) Ew) E(v)

WO
By | By ‘s

1 s Buy o 812
v ) du Jo o

(125)

(126)

In Part I, eq. (190) we introduced a second order differential

operator in a plane. For a two-dimensional surface it assumes the same

form

D =80 ™ 2812%w * 8110y
Using (125)-(127) with

F G =

= g(v)Azu s g(v)sz

we can write (1ll4c) as

B9 = (Dp + Fo_ + G¢v)/8(v)

§2.7.1. First Differential Parameters.

Let x, y, z be the Cartesian coordinates.

on the expansions (32) and the components of the unit normal to a surface,

eq. (38), that

(127)

(128)

(129)

It is easy to show based




Al(x,)’) = -XY
Al(y,z) = -YZ

Al(x,z) = -X7

(130)
If u and v are the surface coordinates, then
Bju =gl = myy/E ()
by =827 =gy /8, 131)
4,(u,v) = gl? = -glzlg(v)

§3. Mapping of Surfaces.

Let there be two surfaces S and S in which the parametric coordinates
are denoted as (£,n) and (£,n) respectively. The mapping of a portion
of S onto a portion of S is called a one-tg-one mapping when it is

possible to establish the functional relations

£ = £1(6,m) 4 n = £,(g,n) (132)

where fl and f2 are differentiable functions of the desired orders, and

the Jacobian of the transformation is not zero, viz.,

E.n

g " e 70

€
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In a three-dimensional space E3, the two points on S and S, which

transform into one another under the mapping (132), are respectively
r=¢(,n) (133a)

= p(ER) . (133b)

ey

Using (132) in (133b), we get
r = (£ (g, £,(5,n))

= X(E,n)

Thus the two points which are the images of one another are representable

through the same parametric coordinates as

o]
1]

¢(&,n)
(134)

iR
]

x(&,n)

Equation (134) expresses the meaning of the sentence, '"the coordinate

systems on S and S are the same."

E |
Below we discuss various mappings from one surface to another. Some ,i
definitions have been taken directly from Ref. [18]. y
(i) Isometric mapping: L
]

A mapping of a portion S of a surface onto a portion S of a surface

is isometric if and only if at corresponding points of S and §, when

referred to the same coordinate systems on S and §} the values of gaB

on S and S are the same.

136
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Thus for isometric mapping

8y (Esn) = g g(Esm) . (135)

(ii) Equiareal mapping:

A mapping of a portion S of a surface onto a portion S of a surface
is equiareal if and only if at corresponding points of S and §; when
referred to the same coordinate 9ystems on S and E; the values of g(v)
and E(v) of the first fundamental form are equal.

Thus for equiareal mapping

8(v)(£,n) = g(v)(é,n) (136)

{(iii) Geodesic mapping:
A mapping of a portion S of a surface onto a portion S of a surface
is geodesic if and only if at corresponding points, when referred to

the same coordinate systems on S and S, the following relation holds.

Y =Y y of y of
TV =7 48T S sl S (137)
a8 af * 5aP B

where

£ = i in(g/g) (138)

and

£
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The proof of (137) follows directly from (105) equated to zero.
Since the proof of all the statements in (i), (ii), and (iii) above are
already available in Ref. [18], the reader is referred to that work.
(iv) Conformal mapping:

A mapping of a portion of a surface $§ onto a portion of a surface
S is conformal if and only if, when referred to the same coordinate
systems on S and-g, the coefficients gaB and g&s are proportional at

each point, viz.,
gaB = A(E,n)gae . (139)

As the name "conformal' suggests, the angle between the two inter-
secting arcs in S is preserved in mapping to S.

(v) Conformal mapping of surfaces in a plane:

A theorem on conformal mapping of surfaces in a plane states that:
"Every portion of a surface S, which is at least three times continuously
differentiable, can be conformally mapped into a plane."”

In a plane it is always possible to introduce Cartesian coordinates.
If we denote these coordinates by u and v, then we will first show that
from a general coordinates £,n in a surface in which the metric is

given as

(ds)? = (d£)? + 2g . dedn + g, (dn)? (140)
12 22

811
we can devise a transformation such that the same ds is given by

(ds)? = A(u,v)[(du)? + (dv)?] (141)

§ e —gr

T




The coordinates u and v are called the isothermic coordinates.

First note that (140) can be factored as

(s)? = [V, dg +——(g , +

v)
11 811

i/ ">dn][/—dg+/l_<g12-1/_'dn>]

where i = ¥-1. For each term in the brackets there exists an integrating

factor. Let fl(g,n) and fz(g,n) be real functions, then we can form

perfect differentials

dg' = (£, + if ) [Vg,, dg + (g12 ivg 8y ))dn]
11
1
'= - + - 4
dn (£, - if )[V 1 98 (g12 1/g(v))dn]
Vg
11
Thus
dg'dn’
ds)? = ——— (142)
fl + f2
The curves §' = const., and n' = const., are called isotropic curves.
Since £' and n' are complex conjugates, hence
£' =u+iv , n' =u - iv (143)

Using (143) in (142), we get

(ds)? = A(u,v)[(du)? + (dv)?]

where

- 2 2y~1
A (_fl + f2 )

139
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We thus find that a coordinate transformation from (£,n) to (u,v)

exists in which

8y = 817 » 81, =0 (144)

The above analysis proves the theorem of conformal mapping of
portions of S into a plane, and also introduces the concept of the iso-

thermic coordinates. 1In essence, the isothermic coordinates in a surface

are those coordinates which are orthogonal and in which 8y = = A,

811

so that the metric in the surface is given by (141).

§3.1. Isothermic and Equiareal Coordinates on a Sphere.
We take the parametric equation of a sphere of unit radius as,

(refer to Fig. 9 and eq. (153)),

x = sin 06 cos ¢ , y =-sin 6 sin ¢ , 2z = cos

where ¢ and # are measured clockwise from the x- and z-axes respectively,

and 6 = 0, 6 = 1 represent the north and south poles respectively.

Figure 9.

Thus 811 = sinze, 322 =1, g(v) = sinze, so that the metric on the surface is




(ds)? = sin?-e(d¢)2 + (d6)?

(i) Isothermic coordinates on a sphere:

(144)

We follow the technique shown previously from eqs. (141)-(143).

First
dg' = (fl + ifz)sine «d(¢ + 1 &n tan %)
. 0
'= — . - —
dn (fl if2)31n6 d(¢ i 2n tan 2)
Second
=1 -
fl " sing * "2 0
then
' . 0
£ =¢ + i 2n tan 2
=u + iv
n' =¢ - i &n tan $
2
=u - iv

. Equating the real and imaginary parts, we get the mapping

$ =u, 0= 2tan_1(ev)
or

u=¢ , v =4n tan =

141
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The equations (145) define the isothermic coordinates on a unit sphere.

It is an easy matter to verify that using (145), the Cartesian coordi-

nates are
§
2e’cos u -2e¢'sin u _1 - eV E
x = v * Y ~° v * %7 2v (146) i
1+e? 1+ e l+e :
in which the metric coefficients are %
2v J
be
g, =8 = —— (147) ﬂ
22 11 a + e2v) ?
and the metric has the required form, E
4e2V q
(@s) = ———-—[(du)? + (dv)?] (148) 1
(1 +e ) b
|
(1i) Equiareal (mapping) coordinates: .s
The mapping j
q
- - z 1
u=¢, v=2sin 5 (149) |
;
yields the metric ;
2 _ (dv)? 20 _ V2 2
(ds) —_—E + v-(1 4 ) (du) (150) L
4 .
The mapping (149) is equiareal, for if we take an auxiliary Cartesian }
*x %
plane x y 1in which the polar coordinates are v and u so that

} 142
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* .
y =-v sin u

then the metric in this plane will be given by
* 2 2
(ds )% = (dv)? + vZ(du)? (151)

Thus the value of g(v) in both spaces are the same, which is the }
condition of equiareal mapping.

The transformation (149) establishes a one-to-one correspondence
between the points of a unit sphere and the points of a plane. As 6
varies from O to w, v varies from O to 2. The north pole is the center

of the concentric circles. The limiting circle on the outside is the

*

south pole. (Fig. 10) y

RN

Figure 10.

§4, Some Standard Parametric Representations.

For reference purposes, we list some parametric representations for
known surfaces. In the following we have used u¥(a = 1,2) to represent L
the surface coordinates. (Taken from Ref. [18]).

(i) Sphere of radius a:

2

g(ua) = (a cos ucos ul, a cos u?sin ul, a sin u?) (152)

143




g(ua) = (a sin u?cos ul, a sin u?sin u!, a cos u?)

O<ul <2m, 0 < u? <
(ii) Cone of revolution:
E(ua) = (ulcos u?, ulsin u?, a ul)
0 <u? <2
(iii) Ellipsoid:
g(ua) = (a cos ucos ul, b cos u?sin ul, c sin u?)
(iv) Elliptic paraboloid:
g(ua) = (a ulcos u2, b ulsin u?, (u1)?2)
(v) Hyperbolic paraboloid:
g(ua) = (a ulcosh u2, b ulsinh u?, (ul)?)

(vi) Hyperboloid of two sheets:

g(ua) = (a sinh ulcos u?, b sinh ulsin u?, ¢ cosh ul)

(153)

(154)

(155)

(156)

157)

(158)
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Part III

Basic Differential Models for Coordinate Generation

§1. Problem Formulation

The problem of generating spatial coordinates, either by analytic
or numerical methods, is a problem of much interest in practically all
branches of engineering mechanics and physics. A look at the older
literature shows that most problems in fluid mechanics, electrostatics,
potential theory, space mechanics, even relativity, etc., which have
been classified as solutions of permanent value, are for discs, flat
plates, circles, spheres, spheoriods, cones, ellipsoids, and paraboloids,
etc. The main reason for interest in these shapes is because of the
availability of exact amalytic coordinates which are body conforming,
so that the physical conditions at their respective surfaces can be
exactly imposed. In some cases the governing equations in these coordi-
nates are much simpler than in any other coordinates.

The coordinates for the above mentioned shapes and a score of
others are obtained by the use of elementary geometrical and algebraic
methods, which are introduced at a very early stage of one's mathematical
and engineering education. Later, at a slightly higher level, in courses
on differential geometry, these coordinates are repeatedly used in
exercises to investigate the geometric properties of surfaces and of the
curves which are formed in them. These geometric properties are obtained
by using the differential relations which have been developed in Part

II of this report. A question which naturally arises at this stage is

145
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this: Is it possible to develop a set of consistent differential

e ey 7 x

relations and equations from the available body of differential- !
geometric results so as to generate coordinates for arbitrary shaped
given bodies? 1In fact this question has been addressed by various
researchers after Gauss, not from the point of view of arbitrary shaped
bodies, but for specific characteristics of a body. As an example, the ﬁ
most widely studied problem has been of generating a surface, and so
its coordinates, when the mean curvature is zero everywhere in the
surface. Such surfaces are called the "minimal" surfaces. Weingarten

surfaces provide another example. Eisenhart in 1923 published a book

[34] on conjugate and other forms of coordinate net in surfaces.

The material of this chapter should not be taken as a review of
the existing methods of coordinate generation but rather as an attempt
to bring in the ideas of tensors and differential geometry in formulating
problems of coordinate generation. (A comprehensive review of the
existing methods in coordinate generation is to be published shortly

[35].) The following two basic criteria have been used in the selection

of material for this chapter.

(i) Derive only those differential relations and equations which
have a direct bearing on the geometry of the generated surfaces, and '
which are of a nature of lasting interest for future research.

(ii) Methods to obtain solutions of the developed equations, if
possible.

Two methods, which satisfy the above criteria are discussed below.

However, it is important first to list a few expansions for the ensuing

material from Parts I and II.

l4e




§1.1. Collection of Some Useful Expansions and Notation.
In what follows, the general curvilinear coordinates are again
denoted as xi. However, when an expression has been expanded out in

full and there is no use for an index notation then we shall use the

symbols £, n, ¢, where
x!=¢,x2=n,x3=¢ ey
Rectangular Cartesian coordinates are the components of the position
vector r, i.e.,
r = (x,y,2) (2)

From Part I, eq. (39), the covariant base vectors in space are

ar
a, = —r-
2 SN

Thus

a,=r ,a,=r (3)

where a variable subscript will always denote a partial derivative.

The metric tensor gij in three dimensions has six distinct components.
The determinant g is then

= - 2 - 2 - 2
8 = B1185,843 + 2819813873 = (8y9)%8)) - (8)3)%8,; = (8;,)%833  (4)

Writing
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= - 2
Gy = 822833 ~ (83 (52)

G, = 811833 ~ (83)? (5b)
Gy = 8178y, ~ (8,)? (5¢)
G4 = 813823 ~ 812833 (5d)
G5 = 812873 ~ 81387 (5e)
g = 812813 ~ 81823 (5£)
we have
gl =6/8, 8?2 =¢,/8 , 833 = G;/g (6a)
g!2=6,/g , g'® =c./8 , 823 = G/g (6b)

i
jk

eqs. (130) and (133) have been expanded for a three-dimensional space

The space Christoffel symbols [ij,k] and T',. defined in Part I,

and listed in Appendix 1. The surface Christoffel symbols of the second

o

By
{(Refer also to Part II, eqs. (82).)

kind T, for various coordinates held fixed are listed in Appendix 2.

As stated earlier, the xi or &, n, § are the coordinates in a
three-dimensional space. In place of using different symbols for a two-
dimensional surface imbedded in the three-dimensional space, we have used
£, n as coordinates on a surface on which ¢ is held constant. This and

two other possibilities are listed below,.




(1) Coordinates (x!,x%) or (£,n) on a surface on which x3 = ¢ = const.

(i) " (x3,x!) or (g,g) " " " " " 2 = p = const.

(11i) " (x2,x3) or (n,g) " " " " "yl =g = const.
),

Note that the right-handed convention is implicit in the ordering of
the coordinates.

The index symbol v is used in parentheses to denote which index or
coordinate has been held fixed, with the exception of Gv+ {without
parentheses) which stands for the value of G at v = const. as defined
in eqs. (5).

For variations from 1 to 2, or 3 to 1, or 2 to 3, we use Greek
indices. Thus, according to Part II, eq. (37), the unit surface normal

on a surface v = const. will be

)

n o= (r, < rp)/ |z, x x4l (8)
where
v=l:a=2, 8=3 (surface x! = £ = const.)
v=2 :a=3, =1 (surface x2 = n = const.) (9)
v=3:a=1,8=2 (surface x3 = ¢ = const.)
The rectangular components of g(v) are

+In Part II, the Gv appearing here was denoted as g(v).




B(v) - (x(“), Y(v)’ 7V,

. (10)

The coefficients of the second fundamental form for a surface, b

have been defined in Part II, eq. (46a). We now adopt the following *
notation in place of baB'
S(v) = g(v) * Toa {no sum on a)
™ r~l(v) Cr g (11)
U(V) = g(v) * Igg (no sum on B)

where (v,a,R) are in the permutational sequences of (1,2,3) as shown in
9.

The Gauss equations, defined in Part II, eq. (79) are now written as

e O 0
~aa aa~y ~

S S T(v)?(v)

LaB ap-y (12)

= 7Y ) _(v)
tgp = Tgely *U @

2]
I

where the summation is to be performed only on y, and (v,x,B) are in the
permutational sequences of (1,2,3) as shown in (9).
The sum of principal curvatures of the surface v = const., (defined

in Part II, eq. (60)) is now written as




)

v) (v)
kl + k2 = (gaau

- ZgaBT(v) + gBBs(“))/cv (13)

where, in writing eq. (13) for a particular value of v, use must be

made of (9).

The two second order differential operators introduced in Part II,

eqs. (124) and (127), are now written as

() . 1, L i
8" 2 B, gty - 8,0
v v
+ 3 {—l—<g 3 - g .8 )} 14)
B Joo oo B aB a
v
) -
D = gBBaaa ZgaBaaB + gaaaBB (15)

§2. Differential Equations for Coordinate Generation Based on the
Riemann Tensor.

Earlier in Part I, §8, we discussed the curvature of a general space
in terms of the Riemann tensor. It was shown in Part I, eq. (251) that
the six distinct components of the Riemann tensor R for a three-

1jk
dimension space are

Ri212 » Ry313 2 Rasog v Rygis v Ryogp o Rygog

If the space is Euclidean, i.e., E3, then the above components are
identically zero no matter which coordinate system is introduced in this

space. Thus

Ri212 0 » Rygq = 05 Rygpa =0 (16a)

r 4
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R1213 %05 Ryp3p =0, Rygpy =0 (16b)

Equations (16) are those consistent set of partial differential
equations which must always be satisfied by the metric coefficients gij'
It should be noted that there are six distinct coefficients to be obtained
from the six equations (16), so that we have a closed system of equations.
In contrast, a two dimensional space has only one curvature equation and
three metric coefficients, the four-dimensional space in general rela-
tivity has twenty curvature equations for the ten metric coefficients.

In these cases the system is either under determined or over determined,
respectively.

Using eq. (247) of Part I, we now write the six second order partial

differential equations as dictated by (16).

2 2 2
A St L
1212 an2 3£3n ag2

+ 2g%%([22,s][11,¢] - [12,s][12,t]} = O (17)

2 2 2
9°811 ) 0813 97834

R T —
1313 ag? 3L + 32
+ 2g%([33,s][11,t] - [13,s][13,t]) = O (18)
2 2 2
9°822 97833 7833

Ry = ——= = 2
2323~ y¢2 andg an?

+ 2855((33,8]122,t]

[23,s}{23,t]) = 0 19




'-.'-...____,_.,__..._...-n--—unn---nillllll!lllllllllllﬁ"'

2 2 2 2
07811 9781y 27813 7By,

R =
1213 j3nac agdC agan 3g?

+ 2g55(123,s1[11,¢] - [12,s](23,t]) = O (20)

2 2 2 2
R By By By Py j
1232 3L anac 3gan an? ¥

+ 2g"%(122,51113,¢] - [23,s]012,¢]) = 0 (21)

2 2 2 2
I - R AL S WY

R
1323 3gan  anac | afac ag?

+ 28%5((33,s1112,¢] - [23,s][13,t]) = O (22)

For a triply orthogonal system of coordinates

812 7 813 T 837 0 (23a)
[12,3] = [13,2] = [23,1] = O (23b) ;
3 =r2 =7l <
3, =r2 =tk =0 (23¢)
!
g = 818,853 (23d)

Under the constraint of orthogonality, eqs. (17)-(22) reduce somewhat.

Using eqs. (23) and then multiplying the first equation by 1/Vgllg22,
second by l/vgllg33, and the third by 1/Vg22g33, we can put the equations

in the following form.

e ——e—

3. 1 %8y 5 1 98y 1 9811 98y
S =2+ - My — =0 (20)
£ a¢ an /e n ) — 3¢ 14
811822 811822 8338118,
153




2,1 a1 *en 1 %811 833 _ (25)
e ——— 3 3 3n 3
¢ BBy * V1833 289,%811833
2,1 %3 0 1 Py 1 %22 %33 _ ) e
an on 3z Y4 ————— 3 3¢
v822833 Y8833 28117872833
32
811 _ 1 3311( 1 %5 3g22) , L %t %844 @n
33 "2 an gy, 9T ' gy, 0L J8,, 3¢ on
2
82 1% 1 %y 33, 1 %811 %8y (28)
363 2 o ‘g?_2 3E 843 9 28), 9T 3¢
2
ey _1%33.1 By 1 By 1 %8 %y (29)
3Edn 2 3E ‘gll an 833 3N 28,, 3¢ an

Equations (24)-(29) are the celebrated Lamé's equations, which he

obtained in 1859 by following a different approach.

§2.1. Laplacians of £, n, and ¢ and Their Inversions.
In Part I, eq. (214), we obtained the Laplacian V2¢ of a scalar ¢,

where

V2 =3 +3 4+
XX vy 2z

From the equation for V2¢ we obtained the Laplacian of any curvilinear
coordinate xm, the coordinates being assumed to be functions of the

Cartesian coordinates x, y, z. Thus

m ijrm

V2x = -g ij (30a)
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=-1
8

m m m m
(GyTyy *+ Gylpy + GyTyy + 2G,Ty5

m m
+ zcsr13 + zc6r23) (30b)

where x! = ¢, x2 = n, x3 = ¢, and Gv have been defined in (5).

The inversion of these equations can be written down by using eq.

(215) of Part I as

2
e L (31a)
9x 3xJ X
. s 2
g™ —J%JLT = - 2F g2, 0 (31b)
9x BxJ ™
e . 2
g i_z - = - afn v2" (31c)
X BxJ X
Introducing the operator
= G.3d + G,0 + G, 0 + 2G,3 + 2G_.9 + 2G,9d
L 17¢g¢ 2 nn 3ty Gy En 5°¢g C6ont (32)
we can write eqs. (31) as
Lx = -g(x,V2f + x V2n + x _VZg) (33a)
£ n g
Ly = —g(ygvzi + ynVZn + ycvzc) (33b)
Lz = —g(zgvzg + znvzn + zcvzc) (33¢)

The operator L reduces to the operator D (defined in Part I, eq. (190))




for the two-dimensional case. The corresponding equations are then

eqs. (216) of Part I for the surface { = constant.

§2.1.1. Laplacians in Orthogonal Coordinates.
In the case of orthogonal coordinates the equation (30b) can be

simplified to have the following forms for £, n, z.

[8,,8

VZE = i i( M) (343)
8,8

v2y = L 2 Z11733, (34Db)
/g— an 822
8.8

veg = 2 [ EEh (34c)
/g °°d B33

§2.2. Riemann Curvature Tensor for Specific Surfaces.
It is worthwhile for us at this stage to list the Riemann curvature
tensor for specific surfaces, £ = const., n = const., and £ = const.

We refer to Eqs. (89) and (91) of Part II where the single Riemann

*
tensor for a surface RuaYB and the Gaussian curvature K were defined.
*
In expanded form the expression for R is
uayB
* 9 ] (o]
R = ——[aB,u] - —Zloy,u] + T _[uB,0]
uoy8 auY Bu6 ay
- 12 [uy,o0] (35)
af ’

Thus, for £ = const.
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Ry,qp = 3—35[22,1] (21,1] + 11, (12,1] + 13, (12,2]
- Téz[ll,ll - ng[n,z] . (36)
for n = const.
R)sps = 3 [33 1) - 2 (31,1] + 73,[13,3] + 1}, (13,1]
- T§3[11,3] - T§3[11,1] . (37)
for £ = const.

*
2

=2 _ 9 2 3
Ry3p3 = 35133-21 - 57(32,21 + 15,023,2] + 73,[23,3]

-

-~ 'r2 [zz 2] - T§3[22,3] (38)

For the expressions of T's refer to Appendix 2.

Each one of (36)-(38) can be reduced to different forms. For

where G

3
The

example, eq. (36) can also be expressed as follows.

, o s
Rizip = lay antey, 1) " ag(g T2 (39a)
/(Q 2 5

is defined in (5¢). The forms (39a,b) are due to J. Liouville.

Gaussian curvature for each surface is




- para

@ _, (@, ) _ *

K =k, 7k, = R1212/G3 (40a)
m _, m, () _ *

K =k "k, = R13l3/G2 (40b)
€ _ . ®, (&) _ *

K = kl k, = R2323/61 (40c)

It must be noted that in any one of the formulae, from (36)-(40), all
quantities have to be evaluated for the coordinate held fixed. There
is no difficulty in this process, since any of these quantities have no
derivatives with respect to the variable held fixed.

As obtained in Part II, eq. (90a), we can also write the equations

in (40) as
k(&) = (@ _ (T(c))zl/c3 (41a)
kM o My (T(”))Z]/GZ (41b)
k&) = [s@y8) _ (T(E))Z]/Gl (41c)

In the representation (41), the quantities S, T, U can also be determined
through other quantities which are dependent on the derivatives with
respect to ;. These representations thus establish a connection of the
given surface with the neighboring surfaces. This idea has later been
used (see §3, eqs. (74)) to develop a method of coordinate generation

from the data of the given surfaces.

§2.2.1. Coordinates in a Plane.

1f the surface ¢ = const. (say), on which £ and n are the parametric

158




coordinates, reduces to a plane, then for this surface K(;) = 0.+

Consequently, we have a single equation (selecting either (39a) or

(38b)),
G, VG,
S 32y _ B8, 3.2
an(gll ) ag(gn T =0 (42)

In contrast to the six equations (24)-(29) for a three-dimensional

space, we have only a simple equation for two-dimensional space. All

the three coefficients gaB cannot be determined from this single equation
and additional relations, either algebraic or differential, have to be

imposed to solve eq. (42). We shall return to these problems in §2.4.

§2.3. Determination of the Cartesian Coordinates.

The solutions of eqs. (17)-(22) under the prescribed boundary
conditions should provide all the metric coefficients as a field
distribution, so that by differentiation one can calculate also all the
Christoffel symbols F;k.

Stokes equations, only the metric coefficients gij and the Christoffel

Now in any physical problem, e.g., the Navier-

symbols F% appear in the transformed equations, so that the solutions

ik
of the equations (17)-(22) provide all the essential coefficients to
solve the physical problem. Nevertheless, one sometimes also needs the
values of the Cartesian coordinates x, y, z as functions of &, n, Z.
Our purpose is now to describe a technique for the determination of x,

y, z based on the availability of the metric coefficients.

We define the unit base vectors

*Refer also to Appendix 3 for the Beltrami equations in a plane.
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~1 ~

y = agllagl = a Ve (43)

ii

where there is no summation on i. The components of A, along the

i

rectangular Cartesian axes are denoted as u_, vi, w, respectively, i.e.,

i i

éi = (ui,vi,wi) (44)

In total there will be nine values of uss, Vs wi.

Now

dr = 1)V8y; &+ 2578y, dn + Ay7855 40

so that the values of x, y, and z are given by the line integrals

X = f u1Vg11 dg + uzn/g22 dn + u3fg33 dg (45a)
y = f VlVgll dg + vzv’g22 dn + v3¢g33 dg (45b)
z = f w1Vg11 dg + w2¢g22 dn + w3¢g33 dg (45¢)

The determination of ugs Vv (i = 1,3) which is needed in eqs.

1 Vi
(45) poses another problem. Their derivatives can, however, be expressed

in terms of Uiy Vs W by substituting (43) in eq. (134) of Part I as

a4 811 ., 822 ., B33
Y it Y A TRy it
ax’ 84 M 2/ Bi4 Bii

Ay 984y

P yeany - (46)
2834 ayd




where there is no summation on i.

On changing 1 and j from 1 to 3, we find twenty seven values of the
derivatives from (46). Thus, they form a system of twenty seven first
order partial differential equations to be solved under a prescribed

Cauchy data.

§2.4. Coordinate Generation Capabilities of the Developed Equations.

The derivation of eqs. (17)-(22) has demonstrated quite clearly
that these equations are neither arbitrary nor randomly selected to
generate some coordinate system. They are actually the very basic
equations which every coordinate system in E3 must satisfy. Any six
symmetric functions gij of a coordinate system &, n, ; which satisfy
eqs. (17)-(22) are qualified to be called the metric coefficients of
the introduced coordinate system in E3.

Despite the versatility and power of these equations, the solution
of these equations is difficult to obtain. The set of equatiomns (17)-
(22) form a highly nonlinear system of coupled partial differential
equations. Even if they have been solved, the determination of x, y,
z requires a solution of twenty seven first order partial differential
equations as shown in §2.3. Nevertheless, these equations must form a
basis for future developments. An indepth study into the nature of
these equations, e.g., the compatability conditions and the type of
data to be prescribed as the boundary conditioms, etc., has to be
investigated. In the following sub-sections we consider two particular

cases of these equations.

§2.4.1. Two-Dimensional Orthogonal Coordinates in a Plane.

For the case of orthogonal coordinates in a plane, the basic
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equation to start with is eq. (42). When the constraint of orthog-

onality, viz.,

8yp = 0

is imposed, we get the equation

og og
3 1 22) + 2 1 11

g ——— 3 on: ——— an
811822 811822

) =0 (47)

In Ref. [36] a method has been developed to compute orthogonal
curvilinear coordinates about arbitrarily given inner and outer boundaries-
Equation (47) is first simplified for the case of isothermic coordinates
(refer to §3 of Part II, particularly eq. (144) and the definition

that follows), in which

822 7 B11 (48)
and eq. (47) takes the much simpler form
aZp | 3°%P
—+—=—=0 4
where
P = anll

From eqs. (34a,b) we also have the additional conditions, that for

isothermic coordinates
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v2g =0, V2n =0 (50)

where now V2 = 3 + 3
yy

XX and 833 = 1.

Equation (49) can be exactly solved in a Fourier series form by
prescribing the values of 8;; Or P at the inner boundary, denoted at

n= nB, and the outer boundary denoted as n = n_, as shown in Ref. [36].

The equations (50) are then used to pick out those § distributions
which establish an orthogonal correspondence between the points of the

inner and outer boundaries.

§2.4.2. Three-Dimensional Orthogonal Coordinates.

The governing equations for the three-dimensional orthogonal
coordinates are the Lamé's equations and have been stated earlier in
eqs. (24)-(29). These equations are as complicated as their non-
orthogonal counterparts. In this section we shall study two particular
forms of these equations which are amenable to analysis and computation.

In this connection we need the following definitions.

(1) Gaussian curvature in orthogonal coordinates:
For a surface f = const. in which £ and n are the orthogonal

coordinates, and ¢ is the coordinate normal to the surface, we have

(cf. Appendix 2)

Tz ___l___ 3%11 ‘(‘2 - _1_. EE&% (51)
11 2g2Z an 12 2322 3¢
where G3 = 81,8,;" Thus from (39a), we have
* 1 s i 877 3 1 %8y
Rigi2 = =7 B8 lrC = 57 ¢ n /= 35! (32)
811822 811822
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Using eq. (24) in (52), we obtain

) _ _*
K™ = Ryy)5/64
1 9811 98y

= 4811822833 5z 5z at ¢ = const. (53)
(ii) Surfaces of constant Gaussian curvature:

Surfaces for which the Gaussian curvature has a constant value
at every point in the surface are known as surfaces of constant curvature.
The Gaussian curvature can be either zero, positive, or a negative
constant throughout the surface. A surface [ = const. for which K(g) =0
is a developable surface. A developable surface can be mapped isomet-
rically onto a plane. Recall from Part II, eq. (135) that the isometric
correspondence between two surfaces, when the coordinates on the two
surfaces are the ;ame, is such that the length element ds between two
corresponding points remains the same.

(z)

The simplest example of a surface for which K

(z)

> 0 is a sphere
of radius R for which K = 1/R2, 1If a sphere or a spherical cap can
be deformed in any other shape whatsoever without stretching, tiven its
Gaussian curvature will not be altered. In the case of K(C) > 0, every
surface of constant curvature can be mapped isometrically on a sphere
of radius (K(;))_l/z. All these results are explained in books on dif-
ferential geometry, e.g., [17].

We now consider the following two cases of orthogonal coordinates.

Case I:

Since the coordinates in the surface are orthogonal, the length




element for [ = const. is

@s)2 = g @D)? + gy, (@m? (54)

we now select £ = const. as any arbitrary curve. Through every point
of this curve a geodesic can be drawn. We call these curves as n =
const. Obviously £, n are orthogonal. From Part II, eq. (107b) we

have the result that for n = const. to be a geodesic we must have

9811
an

0

Thus the metric which we select for Case I is

where ¢ remains fixed on each selected surface. Since gll is not a
function of n, we can define an arc legnth as a perfect differential

du for each ¢ = const. as

du = Vgll dg
Thus
@s®)2 = (@2 + g, (an)? (56)

In the literature, the coordinates u, n are known as geodesic polar

coordinates, since a point 0O on the surface can be chosen where

u=0, g22(0,n) =0

NPT _:&:_.\f -




so that ds(C) = 0,

' We now substitute (55) in (52), and have y

Bg I
‘ *  _ 1, ——23.,1 %22 |
212 = 77 811822 30— o) (57a)
4 g
22 j
-4
or,
9g
k&) 2 _ )t___g% /}__ aiz) (57b)
278y, 7By
Thus 1
32 () b
302(78yp) *K"Ve,, =0 (58)
Solving eq. (58)
Vg = sin(u K(C)) . (59)

1 N

22 v

/K(C) .

the parameter u being the arc length along the geodesic coordinates
n = const.

A study of eq. (53) shows that for K(g) to remain constant, the

forms of 811 and 899 should be h

8, = o (z) £(&)

g22 = w(C) F(£,n)

so that

S Yoo el - A
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The form of the function F(£,n) is fixed by the solution (59).

The preceding method can be made a basis of numerical coordinate
generation for those surfaces which can be isometrically mapped on
spheres of varying radii.

Case II:
In this case we select the metric such that in the surface [ =

const., the coordinates are isothermic. Thus we take
8y =8y 2 B33 =1 (60)

Under the constraint (60), eqs. (24)-(29) simplify to the following

equations:

3g g og
5,1 °B1p 3,1 °811 1 11
L= 2y ¢ 2 ) + ( )2 =0 (61)
9E'gy, 9¢ gy, 9 2gu g
og
I ) = 0 (62)
811
og
3, 1 11, _
3 ) = 0 (63)
811
o8
3, 1 11,
3e¢ 2D = 0 (64)
811

while eq. (53) becomes

e v ki n




B

g
@ ___1 11
A TCN LA T ) (65)

A study of eqs. (62)-(64) suggests that the only form g,, can have

is

3 8y, = (& + BL)2£(g,n) (66) g

where A and B are arbitrary constants, and £ > O.

Substituting (66) in (61), we obtain the equation for f as

3 AL3E, 3 1 of 2
ag(f ag)+an( )+2Bf 0 (67)
Writing
Q = nf
' we get
3%q __Q+22 - 6 *
oc2 tant B 0 (68) y

which is an equation similar to eq. (49) except for the last term.

We now substitute (66) in (65), and have

k) = 32/(a + Br)2 (69)

Thus, for each § = const. the surfaces generated will be of constant

Gaussian curvature. Numerical techniques can be used to solve eq. (67).

Bl’

In the context of isothermic coordinates in the surface and B33




we have the following additional equations from eqs. (34).

v2g = 0 (70a)

v2n =0 (70b)
og

V?'Z_; = .L¢ (70c)
gy %

With eqs. (70) available, it 1is possible to develop a complete
algorithm for numerical coordinate generation.

§3. Differential Equations for Coordinate Generation Based on the

Formulae of Gauss.

In this section we shall discuss another method of coordinate
generation suitable for three-dimensional situations and which has the
added property that the method reduces to the method of Ref. [29] for
two-dimensional plane regions. Some details are available in a previous
publication, [37].

Before developing the proposed method it is important to have the
following formulae.

From Part I, eq. (134), we have

= Tl 2 3

555 r115g + Fllgn + Fllgc (71a)
=l 2 3

Ten rlzl"g + rlZEn + rlZEr, (71v)
= rl 2 3

Lo = T22fe * 925y + T35, (71c)

where the 3-space Christoffel symbols are given in Appendix 1.

I%s
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We now consider a surface designated as [ = const. on which £ and

n are the parametric coordinate. Then from eq. (12), we have

1 2 () (c)
Egg TllrE + T r + S (72a) ﬁ
H
T, = Tor + Thr + (8,8 (72b)

T = ThoTe + T3of, + ALY (72¢)

where the 2-space Christoffel symbols for { = const. are given in Appendix
2.
Taking now the dot product of every term with g(C) in both egs.

(71) and (72), we obtain

s(&) . (g(C) . gg)Ffl (73a)
1® o @@ g, (73b) 1
§
]
v® - (Q(C) . E;>f32 (73¢) ;
All g-derivatives in eqs. (73) are assumed to be evaluated at = const.

, The above procedure can be repeated for constant £ and n surfaces. H
However, in what follows we shall be obtaining formulae only for ¢ = b
const. surfaces, and for brevity of notation drop the superscript ()
from the formulae. Thus

= e = . 3
S=n ggg (n gc)rll (74a)
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P et

Ten‘r,=(@:" gc)riz (74b)
U=np-z =(- g;)rgz (74¢)

where

ne*r =Xx +Yy + Zz

T Z Z 4 (740)

§3.1. Formulation of the Problem.
We multiply eqs. (72a)-(72c) respectively by By -2312’ 810

adding and using eqs. (13)-(15) to have
Dr + G3(EEA2£ + EnAzn) = G3t~1(k1 + kz) (75)
where

D = 8y99r = 28159, + 8119,

=L 1 1 _ 1
8,8 c3(2812T12 82711 ~ 811722
(76)

- L 2 _ 2 _ 2
4yn c3(2312T12 85711 ~ 811722
= - 2
G3 = 8118y ~ (81,

To obtain an expression for kl + kz, we take the scalar product of

(75) by n and use eqs. (74)

- [ ] 3 - 3 3
Gaky + ky) = (o« 1.)(8);T5) ~ 28),], + 8p,lyy) (7)
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We now propose to put constraints on the coordinates £ and n such that

ByE = 0 (78)

An =0 (79)

With these constraints, the differential equations for the determination

of the Cartesian coordinates are given by

Dr = G3t~\(k1 + k,) _ (80)

In expanded form, eqs. (80) are

8y2%ce = 2B12%en t 8py¥py “ X ¢ R (81)

By2Yee ~ 2812y t 819V, " Y ° R (82)

822%g ~ ZgIZZEn + 811%™ Z R (83)
where o
|
|
- 3 _ 3 3 ‘

R= (Xx, + Yy, +22.)(8)1T5) - 28,577, + 8p,5) (84)
5

and
]
X = (y.z, = y,2,)//G;

Y= (xz, - xgzn)/VE; (85)

1

Z= (xEyn - xnye)//ag

-
e e i P act e i




The proposed constraining equations form the core of the method.
Firstly it must be noted that A2 is neither a Laplace operator in the
Cartesian plane (x,y), nor in the Cartesian space (x,y,z), though it
reduces to a two-dimensional Laplace operator when the surface reduces
to a plane surface, viz., no dependence on z. Secondly, the eqs. (78)
and (79) express an attempt in providing a set of basic constraints on
the distribution of gaB in a surface, which is perfectly legitimate.

Another important observation in favor of these equations is the
following. Using the expressions for the Christoffel symbols appearing

in eqs. (76), we can also write

8,8 = —=lx (D) - 222 (86)

A = D) - D) (87)

In the case of isothermic coordinates, viz., when By = 81y €9s. (86)
and (87) are identically satisfied. There is a parallel situation in
the case of conformal coordinates in a plane where Laplace equations are

satisfied identically.

§3.1.1. Particular Case of Eqs. (81)-(83). (Minimal Surfaces).
For surfaces in which isothermic coordinates have been introduced

and at each of its points the mean curvature is zero, we have from eqs.

(81)-(83),
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Such surfaces are called the minimal surfaces.

As an example, a minimal surface of revolution can be obtained by

first assuming

x = f(n)cost , y = £(n)sing , 2 = g(n) .
From (89), we obtain
afz

0 = §£'2 4 g'?

prime denoting differentiation with respect to n.

The isothermic condition gives
£'2 4 g'2 = £2

while eqs. (88) give

A solution satisfying (90) and (91) is
f(n) = A cosh n

g(n) = B + An
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(88a)

(88b)

(88¢)

(89)

(90)

(91a)

(91b)

(92)




where A and B are arbitrary constants. Thus when (92) is substituted

for £ and g in (89) we obtain a minimal surface of revolution.

§3.2. Coordinate Generation Between Two Prescribed Surfaces.

We now consider the problem of coordinate generation between two
surfaces denoted as n = nB and n = n, in Fig. 11, where £ and 7 are the
parametric coordinates in these surfaces.

Equations (81)-(83) form a quasilinear system of partial differential
equations in which the components of the vector EC are assumed to be

prescribed or available through some interpolation/extrapolation numerical

scheme. Since the values of x, y, z are known on the basic inner and

outer boundaries (cf. Fig. 11), the values of (r ) and (r )
~t'n = ng ~tn = n,
are known. Thus a suitable way of prescribing EC in space can be
= f + f
L R L R N (93)
where fl(n) and fz(n) are suitable weights having the properties
(94)

fl(nw) =0 ’ fz(nm) =1

Referring to Fig. 11, we now solve eqs. (81)-(83) for each ¢ =
const., on a rectangular plane by prescribing the values of x, y, and z
on the lower side (Cl) and upper side (Cz) which represents the curves
on B and « respectively. The side (C3) and (Ca) are the cut lines on
which periodic boundary conditions are to be imposed. The preceding

analysis thus completes the formulation of the problem.
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(a)

C' ' JC‘ | l;
~N | |
|
/ Cs [
]
(b) :
Inner n = n_, outer
: Topolo of the given surfaces.
Tgure lt;r£:it iniabﬁzs £, . (b) Surface to be generateg for | ‘
Zachn2,= const., current variables ¢, n.
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§3.3. Coordinate Redistribution.

For the purpose of generating coordinates between the space of the
t
‘ inner and outer boundary, which can be distributed in a desired manner,
i we consider a coordinate transformation from £ to X and n to o. Let
'h
I
g =E(X) + EO
(95)
n=n() +ng
then
€=§0 at X=XO’g(X0)=0
(96)
n=ng at o =0p, n(oB) =0
Writing
dg dn
L & — ST ——
A0 =55, 8(0) = gg (97a)
and denoting the transformed metric tensor as E;j’ we have
=g 2 5 = g2 2 2
811 gll/A » By = Xy Yy oz (97b)
Bip = Bp/0A 5 By, =X X Fy Y, 2z, (97¢)
=g 2 o o= 2 2 2
By2 = 833/07 » 8yy =Xt ¥y * 2 (97d)
= C 24,2 C =o o - (o 2
Gy = G3/6%0% , Gy = 8);8y; = (8))) (97¢)




k. +k (97g)

R = R/622%2 (97h)

Further noting that

r A
= _ =X Xy /2
Tee (fxx X Y/ (98a)
Ten = EXO/OA (98b)
Eoeo 2
1fnn = (Eoo T8 )6 (98¢)

Substituting eqs. (97) and

following set of equations

(98) in egs. (81)-(83) we now have the

89%yx ~ 2812xxo +811%55 = Pxx +Qx + X R (99)
BygVyx ~ 2812Yx0 * B11Y00 T Py +Q,+Y R (100)
BooZxx " Zglzzxc +811%50 sz +Qz  + Z R (101)
where
EZZ
P=
- (102)
11
Q=73 8,

Thus, by choosing A and 0 arbitr

arily we can redistribute the coordinates




in the desired manner. An example of this choice is given in the

next section.

§3.4. An Analytical Example of Coordinate Generation.

In this section we shall consider the problem of coordinate
genaration between a prolate ellipsoid (considered as an inner body)
and a sphere (considered as an outer boundary), with coordinate contraction
near the inmer surface. This problem yields an exact solution of the
: equations (99)-(101).

Let n = nB and n = n, be the inner prolate ellipsoid and the outer
sphere respectively. The coordinates which vary on these two surfaces

are £ and . We now establish a net of lines made of £ = const. and ¢ =

const. on both surfaces. A curve C1 on the inner surface designated as ;
g =g, is
X = cosh nB cos co
y = sinh g sin &g cos € (103) i:
iy
z - B

sinh nB sin ;0 sin §

corresponding to ¢ = £, on the outer surface is

Similarly, the curve C 0 |

2

n(x)
X = e [ofe}:]
%0

nm
y = e sin CO sin ¢
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n
z = e sin ;0 sin g

(104)

Based on the forms of the functions x, y, z in (103) and (104), we

assume the following forms of x, y, z for the surface ¢ = co:

x = f(o)cos CO

«
it

¢ (0)sin Lo cos £ (105)

N
]

¢ (o) sin Zo sin &
The boundary conditions for f and ¢ are

f(oB) = cosh g

noo
f(om) = e
(106)

¢(ow) = sinh nB

nw
¢(ow) = e

Calculating the various derivatives, metric coefficients, and all
other data needed in eqs. (99)-(101), we get on substitution an equation

which has sinzc0 and coszgo. Equating to zero the coefficients of sin2;0

and coszco, we obtain

£.81 .8
re5 oty (107)

——




AR +-%% (108)

where a prime denotes differentiation with respect to ¢. Equations
(107) and (108) can be directly integrated. The solution under the

boundary conditions (105) and (106) is

f(c) = A exp(Bn(o)) + C (109)
$(0) = D exp(Bn(o)) (110)
where

A = (exp(n_) - cosh nB)sinh nB/(exp(nm) - sinh nB) (111a) :
Yin, - np) :

B = 2n[(exp(n ) - sinh ny) ] (111b)
C = (cosh ny - sinh n)exp(n )/ (exp(n) - sinh ny) (111c) |
b = simh (111d) ;

B
As an application we take the functions £(X) and n(c) from Ref. [38],
£(x) = ax

n(o) = b(o - cB)K0 |

where a and b are constants. Since at n_s

n(e) =n, - ng

hence
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(n, = ng)(o - op)

Om“U

B

L n(o) = k(o - %) (112)

B
where K > 1 is an arbitrarily chosen constant. A value of K = 1.1
gives sufficient contraction of coordinates near the inner surface.

For the chosen problem, since the dependence on § is quite simple,
we find that the coordinates between a prolate ellipsoid and a sphere

with contraction are given by

x = [C + A exp(Bn(o))]cos ¢

D exp(Bn(o))sin g cos £ (113)

<
it

N
n

D exp(Bn(o))sinz sin ¢

where A, B, C and D are given in eq. (111).
A computer program based on eqs. (99)-~(10l1) has been developed by
*
Ziebarth by using the method of finite difference approximation. The

differenced equations are solved by using the point-successive over ?

RTINS

relaxation method. Complete duplication of the exact solution obtained

above has been achieved.

-

*
John Ziebarth, private communication.
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Appendix 1

Christoffel Symbols in Three-Dimensional Coordinates

First kind:
k
%8 98 28
. . 1,%84K
[1j.k] = [31,k] = 3¢ ij + j;c _ 1121)
ax 90X ax b‘
o8
e 8 §
[11,1] = 7 7ot |
| :
og %
_1 "1 |
[12,1] = 3 == |
i
.
[13,1] =

[
N
Q>
@l 00
2|
=
DT v

38 g
_1., %12 %82

[23,1] = l(aglz LBy %83 ‘
’ /ANEY an G j

PURPINIVLIR PRSP P S U LA 3

og ag 4
_l, 2813 %833 ¥

g g .
=1 12 11 b
(11,2] = 532 =~ - 5, ) L

2899

=122

og 9g dg
_1,."12 23 13
[13,2] = 5655 + 52 -

9t n




[22,2) = 3 35,2]2
(23,2] = -;-a_j%%
-y
[11,3] = %(2 a_ig 321)
[12,3] = %(323 .\ 323 322)
[13,3] = %_a_iéi

am 3L
2g
_ 1 °%33
(23,31 = 5 57
g
1 %833
(33,3} 2 —EZ_

For triply orthogonal systems: [23,1] = [13,2] = [12,3] = O.

Second kind:

i _ 1 _ if,
I‘J.k—I'kJ. g [ik,2]

Therefore, using eqs. (5) and (6) of Part III, we have
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Appendix 2

Christoffel Symbols Based on Surface Coefficients

(i) Surface { = constant:

og 3g og :
. 1 11 11 12
T3 = 2c3[822 et 81205, -2 5 )]
1
? g dg ‘
g
2 oL 22 22 12,
132 203[311 an T8 - 25 )
0oty oh2_ %  En
22 7 26, 822'° 3q 3E 812 Tan
2 oe iy @Bz Bu %y
11~ 26, 811'° ot an 812 ot
7l 98y %822

S N -
12T 2c3(g22 50~ 812 T3¢ )

ag g
2 _n2 oL 22 11
2= ™1 263(311 3¢~ 812 Ton ) u
(ii) Surface n = constant: ’
et Bu, o PPu o, By F%
117 26,833 "o T B137 ag 3t :
J?.
& TR SPSL F L L)
337 26, 811 ac T 813V 3¢ YA
E
TR U E < E N
33 7 26, 833'¢ T3 aE 813 T3¢
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%83 %8y 987

3 .1 _ - kg 9 3
™1 202[311(2 3E 5z ) " 813 st
08 og 1
PYSNDS WS S § R
13 7 '31 7 26,833 Tag 13 ot %
3
73 =73 = _}_{ _Eél - Egllo ).
137 7317 26, 811 T8¢ T 813 To¢

(iii) Surface & = constant:

g og og
1 22 22 23
2 = 2 P -
T22 201[333 5n T 82305 - 250!
9833 9843 983

1
3 = = —_ -
T33 2c1[322 et 823 G, — 25 0]

w2, - Lg o %23 B3y %y

33 7 26,833 Tag an 823 T3¢ 5
S IO - Bl - N § |
22 2G1 22 an 9z 23 3n f

72 =72 = _l,(g EEZZ -g 3522) :
23 32 2G1 33 ot 23 3n |

T3, = 13, = =—( %3 35255
23 7 732 7 26, 822 an T 823 T3z

In the preceding formulae, the coefficients Gl, G2 and G3 are those

which have been defined in eqs. (5) and (6) of Part III.




Appendix 3

The Beltrami Equations

For a study of the curvilinear coordinates in plane two-dimensional
regions the technique of quasiconformal mapping is frequently used.
Quasiconformal mappings are more general and flexible than the usual
conformal mappings. For details on the mathematical aspects of the
quasiconformal mappings, refer to [39] and [40].

A quasiconformal mapping of a region D onto a region D* is given by
a one~-to-one continuous mapping whose inverse is also continuous
(homeomorphism). The mapping function w = f(z,z) for this case is taken

as a solution of the complex equation
f~ - u(z,Z)fz =0 (1)
where
z=x+ iy , z=x - iy , 1 = V=1

The complex equation (1) is called the Beltrami equation, which is

equal to the two real equations

-, = BE, + Ve )
ny = af  + Bt’,y 3

where
f(z)—z_) = g(x)}') + in(x’Y) (43)
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H(z,z) = u(x,y) + iv(x,y) (4b)

a=[@ -~ w2+ v2]/a (4c)
B = -2v/4A (4d)
Y = [(1L+u)?2+ v2]/a (4e)
A =1 - (2 4+ v?) (4f)
Note that
ay - B2 =1 (6)
a+y=2(2-2)/a ¢))

A quasiconformal mapping becomes conformal when H = 0, or, equivalently
a =y =1, B =0. In this case eqs. (2) and (3) reduce to the Cauchy-

Riemann equations

E.=n_ , & =-n (8)

and f(z) is then a holomorphic or analytic function in D.

Now, from eq. (1)

2 = 2 2 - 2
|H| e+ v |fE/fz|

so that on using eqs. (175)-(177) of Part I, we obtain

b= 478/ (27 + (g + 8,,)] (9

Substituting (9) in (7), we get

.
4

i T ey - -
B =T
"




a+ Y= (g + gzz)//g— (10)

Equations (2) and (3) can also be written by using the inversion

relations given in Part I, eq. (177), as

xg = ayn - an (11)
e = Byn - vxp (12)
Solving eqs. (11) and (12) for x, and Vs we have ?4
i
R |
4
= - 1 ]
x BXE oy (13)
- - gy 14
Yo =YX B>€ (14)

The Beltrami equations (13), (14) form a system of first order

partial differential equations for numerical coordinate generation.
The coefficients o, B and y are related, as can be seen by solving egs.

(6) and (10),

1/2

a0, = (8 + 8y, F{&); +8,,)7 - 4L+ 8Ng}  V2/g (15) ]

The choice of B can be based on the minimization of a certain functional 1
to ensure uniqueness. This algorithm has been followed in Ref. [41]. L

If orthogonal coordinates are desired, then using eqs. (13) and (14)

in the orthogonality condition

gl2 = x{’xn + ygyrl = 0




we obtain B through the algebraic equation

- a)x
B=.EIY——)_.€_Y—g
v 2 - x,2
€ £
An iterative numerical scheme can now be used to solve the coupled

system of equations (13)-(16).
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INDEX
Absolute differentiation, 42
property, 36
Acceleration vector, 62
Algebra of tensors, 36

Angle between coordinate curves in space, 65
between coordinate curves in a surface, 105, 131

Antisymmetric tensor, 13, 14

Area element, 67, 68

Asymptotic curves in a surface, 113

Axioms of Euclid, 21

Base vectors, 9, 12

Beltrami's differential parameters, 130, 131, 134, 135
equations for plane curves, 189, 191
second order differential operator, 133, 134, 151, 172

Bianchi's identities, 79, 80

Binormal vector, 99

Cartesian coordinates, 3, 159

Cauchy-Riemann equations, 190

Christoffel symbols in space, 38, 39, 183
in a surface, 118, 119, 187

Codazzi-Mainardi equations, 123
Conformal mapping of surfaces, 138

Contravariant components of vectors, 9, 12, 28
of tensors, 13, 28

Coordinate generation, 59, 145, 158, 161, 169, 172, 175, 179
Coordinate redistribution, 176

Covariant components of vectors, 9, 12, 28
of tensors, 13, 28
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INDEX (continued)
Covariant derivative, 40, 41, 43
divergence-free tensor, 58
Cross product of vectors, 5, 26, 66
Curl of a vector, 56
Curvature invariant, 78

Curvilinear coordinates, 11

Developable surface, 164

Displacement vector, 14, 19

Divergence-free tensor, 57, 93

Divergence of a vector, 55
of a tensor, 57

Dot product, 4

Dyad, 9

Elliptic points, 109
Energy-momentum tensor, 81
Equiareal mapping, 137
Euclidean space, 18
Event-space, 81

First fundamental form for a surface, 103, 104

Flat space, 72
Formulae of Gauss, 118, 169 E
Fundamental metric coefficients, 21, 23, 34 '
Galilean transformation, 84

Gaussian curvature, 115, 123, 164 "
in orthogonal coordinates, 163, 164

Geodesic coordinates, 127, 130
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INDEX (continued)

Geodesic mapping. 137

Geodesic polar coordinates, 77
Geodesic curvature, 125, 126, 127

Gradient of a scalar, 15, 54 g
of a vector, 16,55

Homeomorphism, 188 ¥
Hyperbolic points, 109
Idem tensor, 13, 27

Inertial frames, 82

Inner product of two vectors, 4
of two tensors, 11, 37
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Intrinsic derivative, 59, 61, 62

!

Isometric coordinates, 137

Isothermic coordinates, 139, 140, 167

Isotropic curves, 139
Jacobian determinant, 29

Kronecker delta, 12
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Lamé's equations, 154

Laplacian of a scalar, 58
of curvilinear coordinates, 51, 52, 156

Lines of curvature, 113, 114

Local Cartesian coordinates, 76

T T T T LTI

Lorentz transformation, 83
Magnitude of a vector, 64

Mean curvature of a surface, 115

Meusnier's theorem, 110
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INDEX (continued)

Minimal surface, 115, 173, 174

Minkowski momentum vector, 86
force vector, 87

Navier-Stokes equations, 92
Non-Fuclidean geometry, 22
Normal curvature of a surface, 107
vector, 107
to a surface, 106
Orthogonal coordinates, 153, 162, 163, 191
Parabolic point, 109
Parallelism, 63, 130
Permutation symbols, 5, 26
Physical components, 66, 67
Position vector, 19
Prircipal curvatures, 111, 112, 113
directions, 111, 112
normal to a curve, 97

Quasiconformal mapping, 189

Ricei's tensor, 77
theorem, 44

Riemann curvature tensor, 73, 156
Riemannian geometry, 22
Riemann-Christoffel tensor, 71
Right~handed convention, 3

Second fundamental form for a surface, 109
Serret~-Frenet formulae, 101

Space, 19, 68

199

TN

R g




INDEX (continued)

Summation convention in Cartesian coordinates, 4
in curvilinear coordinates, 11

Third fundamental form for a surface, 124, 125 ¥
Three-dimensional coordinate generation, 145
Torsion of curves, 101

Transformation of coordinates, 31, 32
Transpose of a dyad, 9

Two~dimensional coordinate generation, 59, 161, 191

Unit normal vector, 96
tangent vector, 96

Unsteady coordinates, 91

Volume element, 68

Weingarten equations, 117




